GPROCESS GAILURE MODE & EFFECTS ANALYSIS

AS13100 / RM13004 PROCESS FMEA WEBINAR

Application of RM13004 in a Complex Assembly Environment

Dr lan Riggs

Quality Executive Rolls-Royce

Harj Sanghera

Manufacturing Engineer Rolls-Royce

Steve Roebuck

Head of Certification & Quality Assurance Rolls-Royce

February 29th 2024

Introductions

Dr lan Riggs

Global Quality & HSE Executive Assembly & Test Operations

- Worked for Rolls-Royce Aerospace for past 19 years, 16 years experience working in the Automotive Industry,
- Founding member of the AESQ in 2013
 - Led the writing teams for AS13100 and AS13003
 - Team leader for AESQ RM13004 Subject Matter Interest Group

Harj Sanghera

Manufacturing Engineer Assembly & Test Operations

- Worked for Rolls-Royce Aerospace for past 2 years
- Leads the Community of Practice (CoP) for RM13004 Process FMEAs in Assembly & Test
- BEng Hons Mechanical Engineering (Derby University). Awarded the Rolls-Royce Sir Denning Pearson Award.
- 10 years engineering experience

Steve Roebuck

Head of Certification & Assurance Assembly & Test Operations

- Worked for Rolls-Royce Aerospace for the past 12 years working in manufacturing and supply chain quality roles
- Current Human Factors Deployment Lead for Assembly & Test Operations
- Previous experience in aerospace supply chain (special processes) and pharmaceutical industry

A Global Attendance

Getting the most out of the Session

Amanda Myers

Aerospace Standards Committee Manager SAE

Please note we are recording today's webinar.

This recording will be available for free viewing on the AESQ website subsequent to this event.

An email notification will be issued to attendees when the video is available.

We will be muting all lines at the start of the session

Use the **Chat Function** to ask a question, at any time, or to make a comment.

Please complete the **Poll & Quiz Questions** when asked (they are anonymous).

AS13100 / RM13004 PROCESS FMEA Webinar

APPLICATION IN A COMPLEX ASSEMBLY ENVIRONMENT

- AS13100 & RM13004 Process FMEA (short) Recap
- **2** Process FMEA in an assembly environment Key Insights
- ³ Practical Demonstration
- 4 Dealing with Human Error in a Process FMEA
- **5** Questions & Answers
- 6 Further Information Sources

AS13100 FMEA Requirements & Guidance

Available to purchase from

https://www.sae.org /standards/content/ as13100

This standard has been created by the SAE G-22 Aerospace Engine Supplier Quality (AESQ) Technical Committee to harmonize and simplify supplier quality requirements that are in addition to the requirements of 9100 Quality Management Systems - Requirements for Aviation, Space, and Defense Organizations and 9145 Advanced Product Quality Planning and Production Part Approval Process

Previously the Aerospace Engine Manufacturers based their supplier quality requirements on 9100 but had differing supplemental requirements and guidance albeit with largely the same intent. These supplemental requirements originate from the need to meet Regulatory, Customer, Industry, and Business requirements that are not explicitly covered by 9100 and 9145.

This standard sets out to create a common set of supplemental requirements with common reference materials to improve understanding, efficiency, and performance. While significantly simplifying the businesses of suppliers with multiple customers, the primary intent of this new standard is to improve overall product quality by focusing on the key systems and processes currently deterring consistent aerospace engine product quality.

These common supplemental requirements aim to raise the bar for anticipated performance in these key areas, and therefore detailed guidance is provided to ensure clarity of expectations.

FOREWORD

To assure customer satisfaction, the aviation, space, and defense industry organizations have to produce and continually improve safe, reliable products that equal or exceed customer and regulatory authority requirements.

The globalization of the industry and the resulting diversity of regional/national requirements and expectations have complicated this objective. End-product organizations face the challenge of assuring the quality of and integration of product purchased from suppliers throughout the world and at all levels within the supply chain. Industry suppliers face the challenge of delivering product to multiple customers having varying quality expectations and requirements.

The SAE G-22 Aerospace Engine Supplier Quality (AESQ) Technical Committee was established under the SAE Aerospace Council to develop, specify, maintain, and promote quality standards relating to the aerospace engine supply chain. The principles defined within this standard may be applicable to other segments of the aviation, space, and defense industries.

The AESQ strategy is to promote defect prevention approaches across the supply chain including those associated with Advanced Product Quality Planning and Process Control to enable the supply chain to achieve Zero Defects.

SAE Executive Standards Committee Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising thereform, is the sole responsibility of the user." SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and

Copyright © 2021 SAE International All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: TH: 877406-7323 (inside USA and Canada) Tel: + 1724-7764070 (outside USA) Fax: 724-7764070 Fax: 724-7764070 Email: CustomerServiceBase.org SAE WEB ADORESS: http://www.see.org For more information on this standard, visit ps://www.sae.org/standards/content/AS13100

RM13004 **Defect Prevention Quality Tools** to Support APQP & PPAP

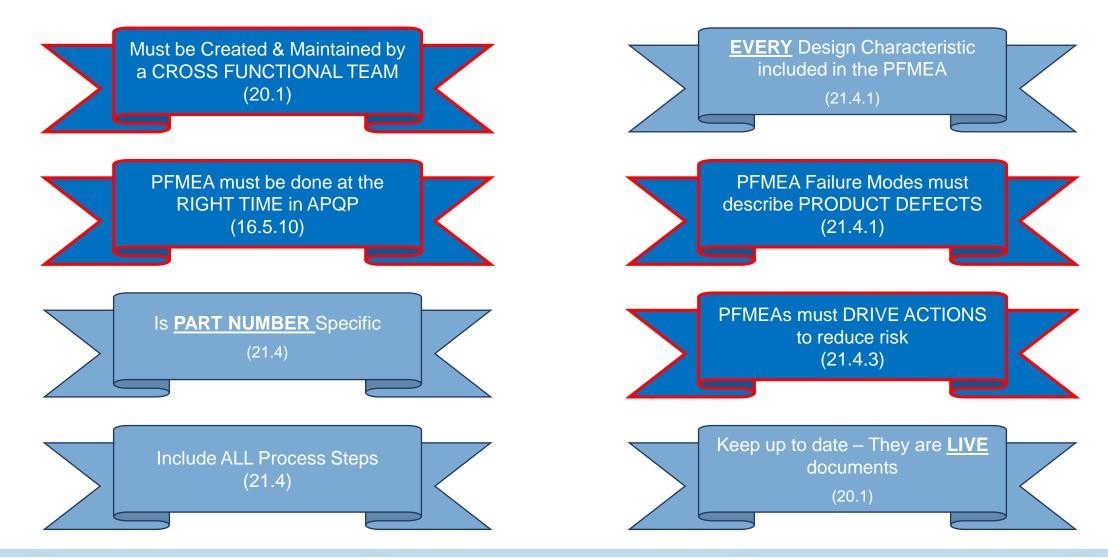
An AESQ Reference Manual Supporting SAE AS13100[™] Standard

Revised January 26, 2024

RM13004

Available to Download for FREE at https://aesq.saeitc.com/supplementalmaterial

🛑 Recently Revised

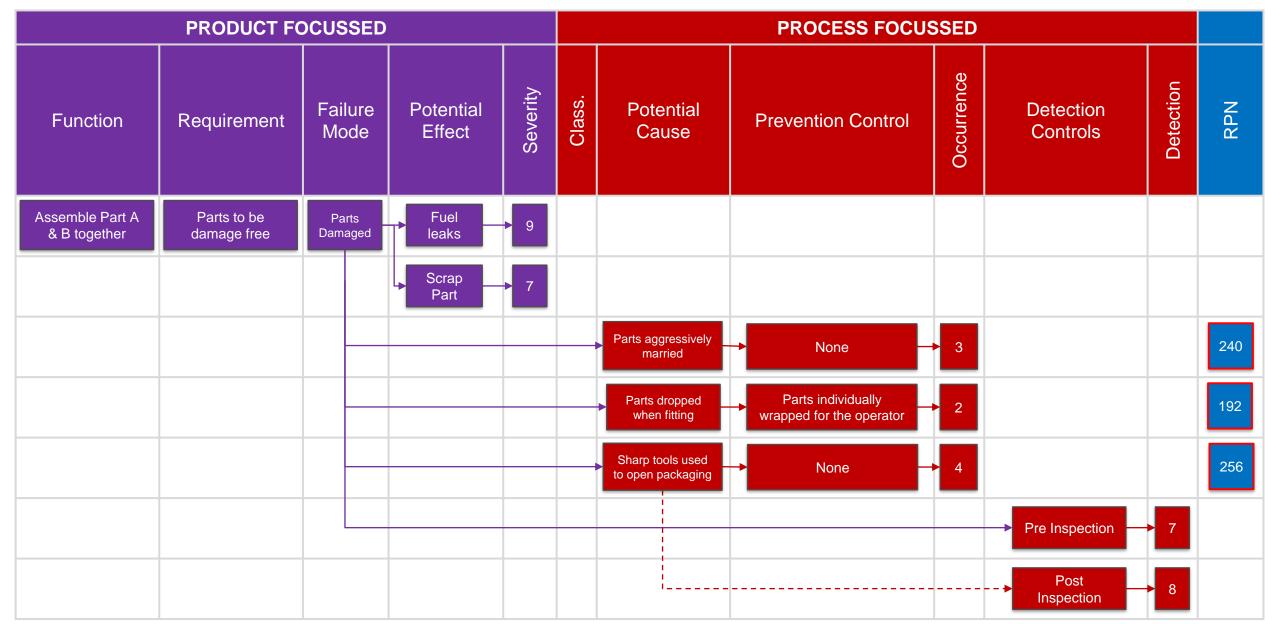

AESQ - Aerospace Engine Supplier Quality Consortium Copyright © AESQ Consortium - A Program of SAE ITC. Further use or distribution is not permitted without permission from AESQ Consortium/SAE ITC.

AS13100 & RM13004 Process FMEA Requirements

AESQ – Aerospace Engine Supplier Quality Consortium Copyright © AESQ Consortium - A Program of SAE ITC. Further use or distribution is not permitted without permission from AESQ Consortium/SAE ITC.

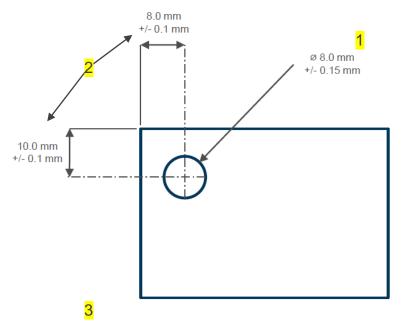
AS13100 Process FMEA Key Requirements (Chapter C)

AESQ – Aerospace Engine Supplier Quality Consortium Copyright © AESQ Consortium - A Program of SAE ITC. Further use or distribution is not permitted without permission from AESQ Consortium/SAE ITC.


The Process FMEA Template Overview

Section 1		Section 2				Section 3		Sectio	on 4	Section 5	Section 6
Function	Requirements	Potential Failure Modes	Potential Effects of Failure	Severity Score	Potential Causes of Failure	Prevention Controls	Occ Score	Detection Detection Controls Score		RPN	Improvement Actions
Assemble Part A & B together	Parts to be damage free	Parts damaged	Fuel Leaks leading to a failure without warning	8	Parts aggressively married	ressively None 3		None 10		240	Improved crane speed control
What is the process that you are focusing on? (Process Step)		How could you get the PRODUCT Requirements wrong? (Potential Failure Modes)				Components are all to fail in the p otential Failure M		Pre & Post inspection How will you		112	N/A
you tryir	UCT attributes are ng to achieve? Requirements)	Failure Modes must describe PRODUCT non conformance			dropped when fitting	occur? tential Causes) None	3 ad 2	Cause and/or F	r?	Risk Priority Number	List of Improvement Actions required to mitigate the key Risks
Defined by Engineering Drawings & Specifications or Assembly Instructions* PFMEA must include ALL Design Requirements		What could happen if it did go wrong? (Potential Effects) How bad would it be if it did go wrong? (Severity Score)			How could this be prevented? (Prevention Controls) Sharp tool Used (How likely is it to go wrong? 4 part packag (Occurrence Score)			How likely a detect the Cau Mod (Detection	se or Failure e?	(RPN)	Decant parts to mitigate risk of damage from sharp tooling
Product Focused				Process Focused					Risk Mitigation		
*see section	on using Assembly	Instruction	later in prese	ntation							

Process FMEA Information Flow


Defining the Assembly PFMEA Requirements

AESQ – Aerospace Engine Supplier Quality Consortium Copyright © AESQ Consortium - A Program of SAE ITC. Further use or distribution is not permitted without permission from AESQ Consortium/SAE ITC

Machining PFMEA Requirements Capture

Specification xyz states no burrs / sharp edges on drilled holes are allowed

Function	Requirement	Potential Failure Modes				
	1) Ø 8.0mm +/- 0.15mm	Hole diameter too big				
OP10 CNC	.,	Hole diameter too small				
Drilling Drill Fuel Hole	2) Location 8.00mm +/- 0.1mm (x), 10.0mm +/- 0.1mm (y)	Out of location				
	3) No burrs or sharp edges	Burrs / sharp edges present				

Machining PFMEA requirements can be derived directly from the Engineering Drawing and Specifications.

Assembly PFMEAs can be more tricky!

Assembly Process FMEA Requirements Capture

Op No.	Operation Text	Who	OP / Step	Requirement	Potential Failure Modes	
10	Unpack components from boxes and protective film	Operator	10	Unpack components from	Components not	
20	Clean components for risk of FOD	Operator		boxes and protective film	unpacked	
30	Inspect components for damage	Inspector	20	Clean components for risk of FOD	Components not cleaned	
40	Assemble the inlet & outlet components and align using the bolt holes	Operator	30	Inspect components for	Damage found	
50	Remove bolts from packaging	Operator		damage		
60	Apply oil to the bolts before fitting	Operator	40	Assemble the inlet & outlet components	Components not assembled	
70	Fit all 8 bolts and hand tighten	Operator			ussembled	
80	Torque bolts to 100 lbf.in to achieve the correct clamping force	Operator	50	Remove bolts from packaging	Bolts not removed from packaging	
90	Inspect final assembly	Inspector				
100	Signoff and pass the next workstation	Requirements & Failure Modes must describe the PRODUCT attributes that need to be achieved				
Prior to	o AS13100 It was common practice to take each line fro	(AS13100 ref 21.4.1)				

Prior to AS13100 It was common practice to take each line from the Assembly Instruction and transfer it to the REQUIREMENTS column in the PFMEA.

Assembly Process FMEA Requirements Capture

Op No.	Operation Text	Who		OP / Step	Requirement	Potential Failure Modes
10	Unpack components from boxes and protective film	Operator			Assemble the inlet & outlet	
20	Clean components for risk of FOD	Operator		40	components in the correct	Incorrect alignment
30	Inspect components for damage	Inspector			alignment	J
40	Assemble the inlet & outlet components and align	Operator		70	Fit all 8 bolts type xyz into	Not all bolts fitted
50	using the bolt holes	Onereter		70	inlet/outlet assembly	Wrong bolts fitted
50	Remove bolts from packaging	Operator				
60	Apply oil to the bolts before fitting	Operator				Clamping force too high
70	Fit all 8 bolts and hand tighten	Operator				too nign
80	Torque bolts to 100 lbf.in to achieve the correct clamping force	Operator	80		Create even clamping force between inlet and outlet by torquing bolts to 100 lbf.in	Clamping force too low
90	Inspect final assembly	Inspector				Clamping force
100	Signoff and pass the next workstation	Operator				not even

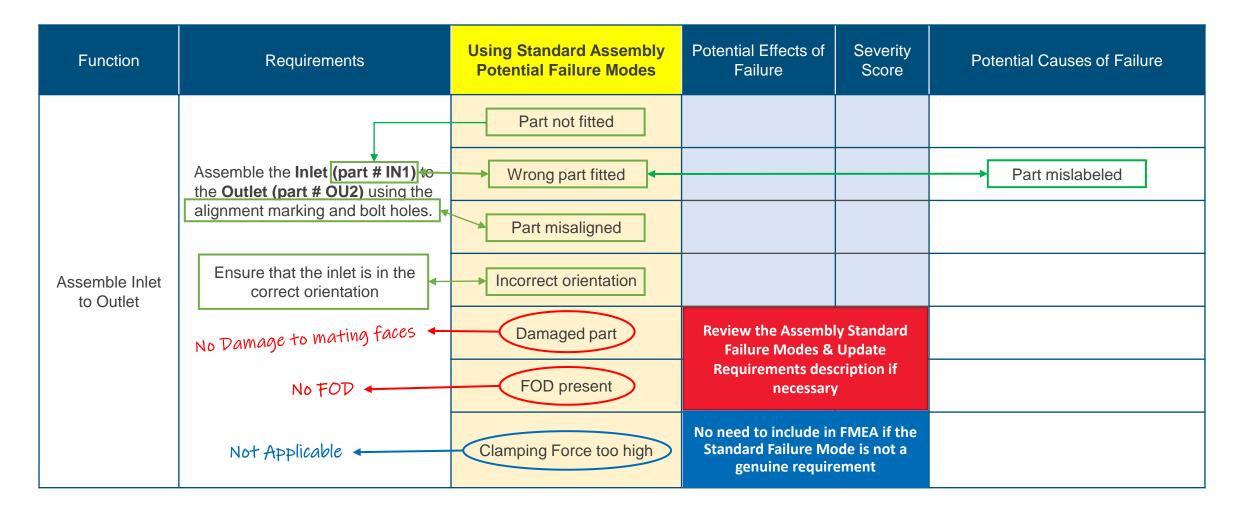
Only the **PRODUCT** focussed instructions are required in the **FMEA REQUIREMENTS** column This will help to **Reduce the Size** of the Process FMEA and keep it focussed on **Product Conformance**

Assembly Process FMEA Requirements Capture

Operation Number	Operation Text	Where else in the PFMEA could this information be shown?
10	Unpack components from boxes and protective film	Potential Cause: Maybe a cause of damage if not done correctly
20	Clean components for risk of FOD	Potential Cause: Maybe a cause of FOD if not cleaned properly
30	Inspect components for damages	Detection Control: Should be described in the Detection column against a Damage Failure Mode
40	Assemble the inlet & outlet components	REQUIREMENTS
50	Remove bolts from packaging	Potential Cause: Maybe a cause of damage if not done correctly, also potential to select wrong bolts
60	Apply oil to the bolts before fitting	Potential Cause: May cause stress damage to the bolt if oil is not applied
70	Fit all 8 bolts	REQUIREMENTS
80	Torque bolts to 100 lbf.in to achieve the correct clamping force	REQUIREMENTS
90	Inspect final assembly	Detection Control: Should be described in the Detection column against the appropriate Failure Mode
100	Signoff and pass the next workstation	Not Applicable

Using Standard Assembly Failure Modes

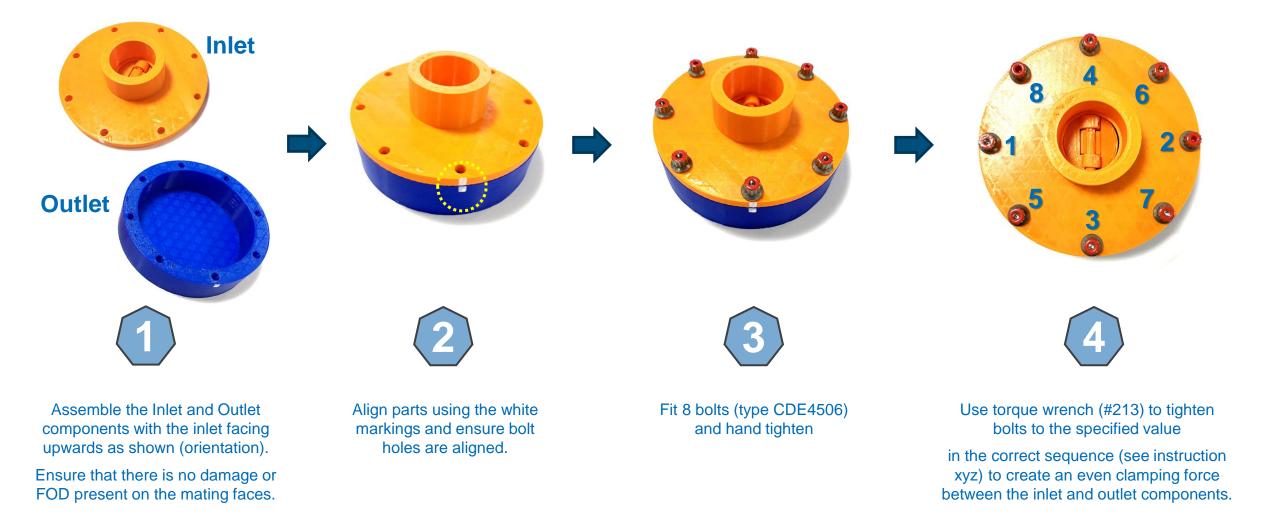
When developing an Assembly Process FMEA there are a number of Standard Failure Modes that can be used to prompt the team.



NOTE: There may be some other **Standard Failure Modes** that are specific to your assembly process so customise if necessary.

They can also help to validate the accuracy of the **Requirements Description**.

Using Standard Assembly Failure Modes to Refine the Requirements Description

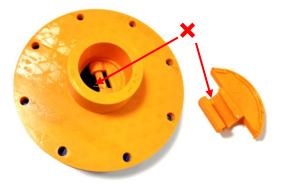


Practical Demonstration of RM13004 PFMEA in an Assembly Environment

AESQ – Aerospace Engine Supplier Quality Consortium Copyright © AESQ Consortium - A Program of SAE ITC. Further use or distribution is not permitted without permission from AESQ Consortium/SAE ITC.

Practical Demonstration of an Assembly PFMEA

Using Standard Failure Modes



1. Part not fitted

2. Wrong part fitted

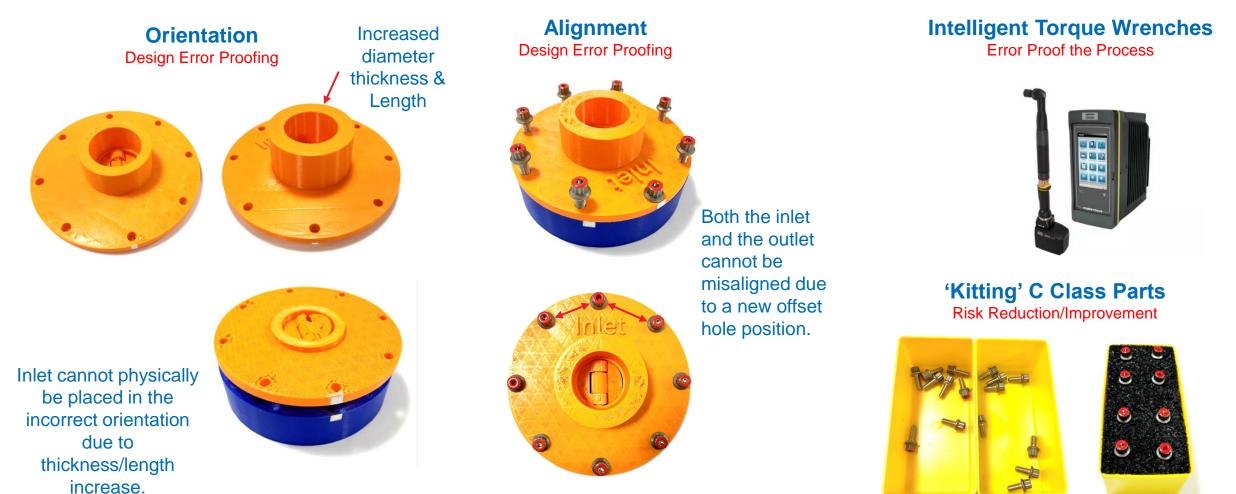
3. Parts misaligned

4. Incorrect orientation

5. Damaged part

6. FOD

7. Incorrect Clamping Force


(Too High/Too Low)

8. Uneven Clamping Force

Using the PFMEA to Identify Improvements

Error Proofing of Parts must be done in the Design Phase In APQP PFMEA starts at Design Concept Phase so we can influence the design process

Only the correct parts are available on the line to select and improved protective packaging

Process FMEA Assembly of INLET and OUTLET

Function	Requirement	Failure Mode	Potential Effect	Severity	Potential Cause	Prevention Control	Occurrence	Detection Controls	Detection	RPN
Assemble both the inlet & outlet components	Create even clamping force between INLET (part number IN2) and OUTLET (part number OU1) by torquing 8 bolts (part number xyz) to 100 lbf.in In the specified sequence (see instruction 123)	Clamping force not even	Insufficient clamping force may lead to excessive vibration in service which may result in loss of thrust and consequently an In Flight Shut Down	▶ 8	↓ Under Torqued Not Torqued Undersized (incorrect) bolt used	Used	 2 6 	Automatic Control	→ 4 -	

Managing Human Error in an Assembly PFMEA

AESQ – Aerospace Engine Supplier Quality Consortium Copyright © AESQ Consortium - A Program of SAE ITC. Further use or distribution is not permitted without permission from AESQ Consortium/SAE ITC.

Aero Engine Assembly Operations

HUMAN FACTORS play a critical part in assuring PRODUCT QUALITY & SAFETY

Human **Factors**

The Dirty Dozen

Complacency

Lack of Knowledge

Distraction

Fatigue

Resources

Pressure

Assertiveness

Stress

Awareness

Norms

Why don't you add the Human Factors FMEA into the Part Specific Process FMEA as described in RM13004?

AESQ – Aerospace Engine Supplier Quality Consortium Copyright © AESQ Consortium - A Program of SAE ITC. Further use or distribution is not permitted without permission from AESQ Consortium/SAE ITC. 27

RM13004 Process FMEA & Human Factors

OP / Step	Requirement	Failure Mode	Potential Effect	Severity	Class.	Potential Cause(s) of the Failure Mode	Prevention Control(s) for the Potential Causes	Occurrence	Detection Controls of the Failure Mode and/or the Potential Causes	Detection	RPN
	Avoid Human Error	Fatigue				Night Shift					
Mode Failu PFM	ire Modes in an F IEA describe Pro conformance	RM13004 duct									
	(RM130	04, Chapter 4, (f))									

RM13004 Process FMEA & Human Factors

OP / Step	Requirement	Failure Mode	Potential Effect	Severity	Class.	Potential Cause(s) of the Failure Mode	Prevention Control(s) for the Potential Causes	Occurrence	Detection Controls of the Failure Mode and/or the Potential Causes	Detection	RPN	
	Assemble Part xyz in correct orientation	Part fitted in incorrect orientation				Distraction		to spe				
		If the part I We n	This is not a Cause & Effect Relationship. If the Potential Causes occurs, we should expect the part Failure Mode to occur We must avoid simple 'operator error' as a Potential Cause (RM13004, Chapter 4, (i))							he nd ca	n	

Human Factors in Process FMEA Key Insights

- Including Human Factor risks into the Product PFMEA creates too much 'noise'
- The Human Factor FMEA approach is used to create a high-level analysis of a process environment (area)
- In the Human Factors FMEA the Dirty Dozen are used as the failure modes,
- Each area will have a unique 'signature' based upon its environment (which can change over time)
- RR have seen significantly increased Human Factors awareness, issue reporting and improvements where deployed

In Summary

AESQ – Aerospace Engine Supplier Quality Consortium Copyright © AESQ Consortium - A Program of SAE ITC. Further use or distribution is not permitted without permission from AESQ Consortium/SAE ITC.

RM13004 Assembly PFMEA Summary

- 1. <u>The Requirements</u> must describe the physical product outcome you want to achieve.
 - Only use the product related descriptions from the assembly instructions.
 - This will also help to reduce the size of the PFMEA and keep it focussed
- 2. <u>Failure Modes</u> must describe a physical property of the <u>product</u> and are derived from the Requirements description.
 - Use the Standard Failure Mode Checklist (customise if necessary)
 - Use it to refine the Requirements Description if needed
- 3. Potential Causes of Failure should avoid loose descriptions such as "Operator Error"
 - Use the Human Factors PFMEA Approach
- 4. <u>Potential Causes of Failure</u>, develop through engagement with the operators/fitters
 - Observe the actual (or similar*) process
 - Capture their insights into known issues and suggested improvements
 - Provide Feedback on progress (visual management).

*necessary when the process is not yet in place e.g. still in design & development phase

Where to Get Further Information on RM13004

AESQ – Aerospace Engine Supplier Quality Consortium Copyright © AESQ Consortium - A Program of SAE ITC. Further use or distribution is not permitted without permission from AESQ Consortium/SAE ITC.

RM13004 Sources of Further Information & Guidance

RM13004 Defect Prevention Quality Tools to Support APQP & PPAP

An AESQ Reference Manual Supporting SAE AS13100™ Standard

Revised January 26, 2024

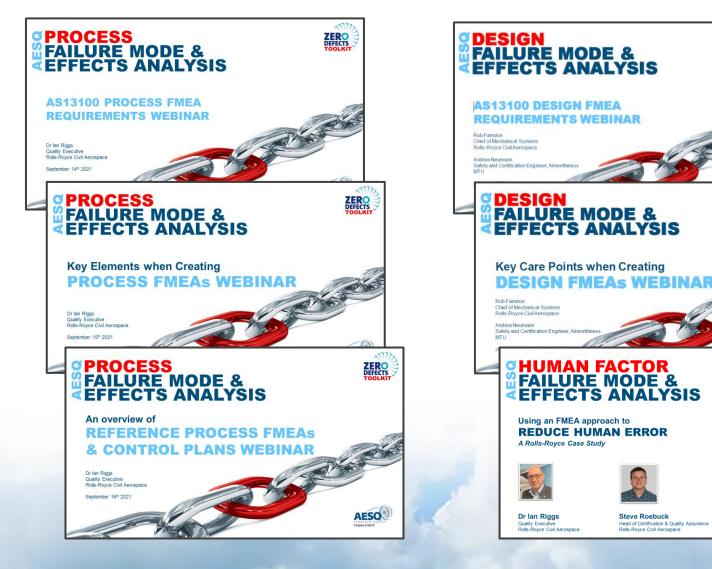
https://aesq.sae-itc.com

- 1. <u>Reference Manual RM13004</u> is available free of charge from the AESQ website
- 2. <u>Subject Matter Interest Group</u> to support RM13004 Deployment established and contactable through AESQ Website
- 3. <u>RM13004 LinkedIn Community of Practice</u> established to answer questions and share best practice (https://www.linkedin.com/groups/9044623/)

Other Reference Manuals and Subject Matter Interest Groups exist for;

RM13000 Problem Solving RM13001 DPRV Training RM13002 Inspection Planning RM13003 MSA RM13005 Quality Audit RM13006 Process Control

RM13007 Sub Tier Management


RM13008 Design Work RM13009 Compliance Assessment RM13010 Human Factors RM13011 Rework & Repair RM13102 First Article Inspection RM13145 APQP / PPAP

AESQ RM13004 Available Webinars

Video recordings and presentation materials of other RM13004 FMEA Webinars are available to download from https://aesq.saeitc.com/defect-prevention

ZERO DEFECTS

ZERO

AESO

Check the AESO Website Future **Events page for** updates.

RM13004 FMEA Software User Insights FREE Webinar

Ebru Cetin **MTU** Aerospace

Jonas Nickel **Rolls-Royce**

Date To Be Confirmed in 2024

SCAN ME

LinkedIn

RM13004

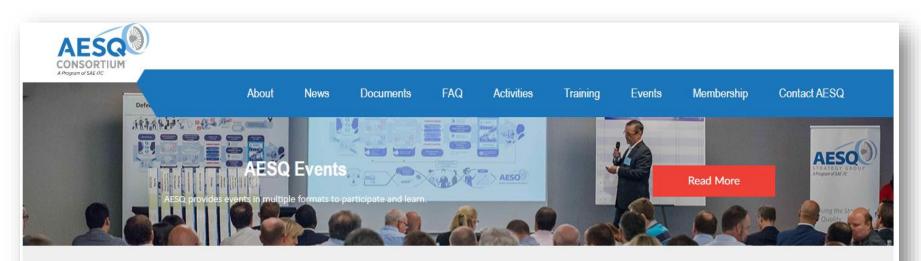
Community

of Practice

(CoP)

AECO what other subjects would you like the RM13004 SMIG Group to cover? Contact the LinkedIn Cop to let us know

AESQ – Aerospace Engine Supplier Quality Consortium Copyright © AESQ Consortium - A Program of SAE ITC. Further use or distribution is not permitted without permission from AESQ Consortium/SAE ITC.


COMING SOON

AESQ 2024 Webinar Schedule

More will be added throughout the year.

Check the AESQ Website Future Events page for updates.

AEROSPACE	Webinar: RM13004 PFMEA for Complex Assemblies	Virtual	February 29, 2024
AEROSPACE	Webinar: The 3 C's of SPC - Control, Capability and Centering - and in that order!!	Virtual	March 26, 2024
AEROSPACE	AESQ Supplier Forum Tokyo 2024	In person	April 25, 2024
AEROSPACE	Webinar: Implementing IX-MR and Target-to-Nominal Charts for small production runs	Virtual	May 14, 2024
AEROSPACE	AESQ Supplier Forum Trollhatten 2024	In person	June 12 - 13, 2024
AEROSPACE	Webinar: How to choose which Control Method I need?	Virtual	June 18, 2024
AEROSPACE	Webinar: Use of Multi-Variate Charts	Virtual	September 17, 2024
AEROSPACE	Webinar: Dealing with Non-Normal Data	Virtual	October 23, 2024
AEROSPACE	Webinar: Process Control for Manual Data Collection	Virtual	November 12, 2024
AEROSPACE	Webinar: How to Assure Successful SPC Implementation	Virtual	December 10, 2024

Thank You for Attending This Webinar - We Hope You Found it Interesting

AESQ – Aerospace Engine Supplier Quality Consortium Copyright © AESQ Consortium - A Program of SAE ITC. Further use or distribution is not permitted without permission from AESQ Consortium/SAE ITC.