WHAT MAKE A GOOD PROCESS CAPABILITY STUDY?

Tools & Tips Webinar sponsored by the AESQ Process Control Methods SMIG
Jan 26th, 2023
PROCESS CAPABILITY
Agenda – 60 minutes

Overview – P. Teti
Who is the PCM Subject Matter Interest Group – P. Teti
Why this webinar? Where can we find help?
PCM Community of Practice – Linked In
A Walk Through a Capability Analysis – S. Hampton
Case Studies – S. Hampton
Q&A – PCM SMIG Team
Summary and Close – P. Teti
WEBINAR OVERVIEW

We are recording today’s webinar and will distribute the video link following the close of the webinar. It will also be posted on the AESQ website for free viewing.

We will take questions during today’s webinar using the Chat feature.

Please remain on Mute during the presentation to prevent background noise. We will also be muting all lines at the start of the session.
Why this webinar?

Communicate how to conduct a robust Process Capability study that meets RM13006 guidelines

Show how to use statistical tools in conducting and analyzing a Process Capability Analysis

Promote the available free documents and tools that can be used by any AESQ supplier

Answer questions suppliers may have about process capability methods
PROCESS CONTROL METHODS PER RM13006

Purpose of this reference manual

RM13006 provides the user with an array of practical approaches to process control used to ensure consistent product quality.

The purpose of this reference manual is to raise the overall capability of the aerospace engine supply chain, standardize the process control requirements across AESQ suppliers, and build on the requirements for PFMEA and Control Plans (ref. RM13004).

RM13006 supports AS9145 - Requirements for Advanced Product Quality Planning and Production Part Approval Process, and AS9103 - Variation Management of Key Characteristics, supported by detailed guidance and case studies.

This reference manual was developed by a dedicated team from AESQ member companies with expert knowledge and experience in the areas of process control, process improvement, quality systems, and supplier engagement.
The purpose of the PCM Subject Matter Interest Group is to promote the effective deployment of the process control methods across the AESQ Supply Chain.

The Group is made up of Subject Matter Experts from the AESQ Member Companies.

The Group is accountable for the AS13100 related Requirements and associated Reference Manual content, ensuring that it is up to date and reflects current knowledge and best practice.

It shall promote the effective deployment of the Reference Manual using Communities of Practice (CoP). The CoP is open to any subject matter expert or individual experienced or trained in process control from the aero engine community.

Activities may include webinars, best practice sharing, development of shared training materials, conferences and published papers.

https://aesq.sae-itc.com/interest-groups
Who is the Process Control Methods SMIG Team?

- Pete Teti (Leader)
 - PWA
- Andrew Stout (Co-Lead)
 - PWC
- Nicklas Gödebu
 - GKN
- Paul Gorg
 - PCC
- Rudi Braunrieder
 - MTU
- Karen Scavotto
 - PWA
- Steve Hampton
 - PCC
- Douglas Dush
 - Honeywell
- Grant Braun
 - PCC
- Geoffrey Carpentier
 - Safran
- Marnie Ham
 - GE
- Shailesh Shinde
 - RR

Curators for RM13006
Experts to answer process control related questions
Provider of process control related
Where to get help

AESQ Supplementary Materials webpage for a copy of RM13000 and supporting templates

https://aesq.sae-itc.com/supplemental-material

Subject Matter Interest Group – meets monthly – supports continuous improvement of RM13006 and supporting templates & tools

AESQ Process Control Methods Community of Practice (CoP) on Linked-In

Current membership is 200 – let’s get some more!!

https://www.linkedin.com/groups/12647920/
A WALK THROUGH OF PROCESS CAPABILITY MATERIAL IN RM13006

SECTIONS INVOLVING PROCESS CAPABILITIES IN RM13006

• 2.1.1 IMPORTANCE OF PRODUCT CAPABILITY
• 3.3 CHOICE OF CAPABILITY METRIC
• 5.3 (PAGE22) PROCESS CAPABILITY FOR PROCESSES WITH INTENTIONAL SHIFTS
• 6.0 PROCESS CAPABILITY INDICES
 • 6.1 FUNDAMENTALS OF VARIABLE DATA
 • 6.2 PROCESS STABILITY IN PRACTICE
 • 6.3 PROCESS CAPABILITY FOR ATTRIBUTE DATA
• 7.0 GUIDANCE FOR NON-NORMAL DATA
 • 7.2 CAPABILITY ANALYSIS FOR NON-NORMAL DATA
• 9.1.2 (PAGE 57) PROCES CAPABILITY FOR MULTIPLE IDENTICAL FEATURES
• 11 (PAGE 67) DATA ANALYSIS ENABLERS
• 13 (TABLE 12) STATISTICAL FORMULAE FOR PROCESS CAPABILITY
WHAT MAKE A GOOD PROCESS CAPABILITY STUDY

Highlights

The importance of Process Capability

Key principles of Process Capability

Process Capability Indices

Guidance for Non-Normal Data

Case Studies

• Standard Capability Analysis

• Between within Capability Analysis

• Large scale Capability Analysis (e.g. CMM part inspection)
Why does Process Capability matter?

- It gives a voice to your process from the viewpoint of the customer
 - Will you be able to satisfy your customers?
- It gives you a number to evaluate your process
 - You can’t understand what you can’t measure
- It lets you know your potential
 - By comparing Ppk to Cpk to Cp you can see how much more improvement is possible
- It lets you know where to spend your resources and be proactive
 - Just because you have not rejected anything doesn’t guarantee you are capable
 - Can Pareto process that are most at risk
Key Principles of Process Capability

- You trust your measurements.
 - Should have an MSA completed
- You can trust your data.
 - Visualize before you start!

In 1628, crowds in Sweden watched in horror as a new warship, Vasa, sank less than a mile into her maiden voyage, with the death of 30 people on board. Armed with 64 bronze cannons, it was considered by some to be the most powerful warship in the world. Experts who have studied it since it was raised in 1961 say it is asymmetrical, being thicker on the port side than the starboard one. One reason for this could be that the workmen were using different systems of measurement. Archaeologists have found four rulers used by the workmen who built the ship. Two were calibrated in Swedish feet, which had 12 inches, while the other two measured Amsterdam feet, which had 11 inches.

Key Principles of Process Capability

- You have enough GOOD data
 - You are capturing your process variations
 - Check with Confidence Intervals review
 - Are they small enough that the estimate is useful?
 - Data should be in time order
 - Super important for Cp/Cpk indices as well as correct control charting
 - Appropriate part family’s have been identified if used
 - See RM 13006 section 9.2

Data sorted by value
Key Principles of Process Capability

- Your process is in control
 - You have evaluated the control chart of your capability response BEFORE starting your Capability Analysis
 - You know that the factors driving the response are in control as well (or will at least be flagged)

Looks good, Control limits may be slightly wider than they should be

Looks good but there may be a trend at the start of the data. Should investigate prior to starting capability analysis.

Red alert! Need to investigate shift before doing a capability analysis.

Issue is too many units in subgroup
WHAT IS A SUBGROUP
(AKA “A RATIONAL SUBGROUP”)

A REPRESENTATIVE GROUPING OF PARTS THAT ARE PROCESSED CLOSEENOUGH
TOGETHER IN TIME AND/OR PROCESSING CONDITIONS THAT THEY HAVE A VERY
LOW LIKELYHOOD OF SPECIAL CAUSE VARIATION OCCURRING WITHIN THE GROUP.

• This allows for sampling from this group to be effective

• This also give good within or short term variation estimates that can be used for
X-Bar control limits and Cp/Cpk capability analysis

• Examples are:
 – Batches of parts between machine set ups or with different dies
 – Parts made over a shift or a day
 – Parts made on different machines
 – Parts made with different raw material batches
 – Multiple hits on a similar surface of a large part (with customer approval)
Key Principles of Process Capability

• You know what distribution to use
 – You confirmed the data is normal and fits well

• You know what indices to use
 – Ppk is your go to for communicating how your process will perform
 – All other indices require some improvement effort to get your Ppk to match

• You understand possible long term drifts or shifts
 – You take into account projected drifts if you haven’t been able to capture in the data
 – A stand by unit started back up but Capability Analysis done on main unit
 – e.g. Seasonal issues but data only from summer

Example of normal distribution used on a naturally non-normal data set
Process Capability Indices

- Cp vs Pp vs Cpk vs Ppk

For this example using subgroups vs I-MR as it shows the difference more clearly:
- Each subgroup has a mean of zero,
- Each subgroup has a stdev of 1
- Each subgroups mean is randomly offset by an integer of 1 to 5).
 - This results in process mean of 3.8.

Cp/Pp: how well does your process variation fit into your tolerance band?

Cpk/Ppk: How well does your process variation combined with your process bias fit into your tolerance band?

Cp/Cpk: within (aka short term) stdev used

Pp/Ppk: overall Stdev used
What we can see here is if we can reduce the overall variability from Overall Sigma to within Sigma, Ppk will become Cpk (red).

Also, we can see that if we now shift all the means to the target of 2 our Ppk will go to Cp (orange).
I-MR style data

Note: When using I-MR data, if Cpk is lower than Ppk, report both the Cpk and Ppk if asked for just the Cpk. The overall variation should always be equal to or greater than the within/short term variation so Cpk should always be equal to or larger than Ppk. However, since the within/short term variation is estimated by the moving range it may end up being a poor approximation and thus overstate the variation.

What drives a difference between Cpk and Ppk will generally be shifts in the data.
What does this show:

• **Cp =** uses the within subgroup variation and is the best your process can perform without diving into common cause variation. You can reach this capability by eliminating the between subgroup variation and shifting the process to the center of the spec band.

• **Cpk =** uses the within subgroup variation and is the potential your process has if you can eliminate the between subgroup variation.

• **Pp =** uses the overall variation and is the potential your process has if you can shifting the overall process to the center of the spec band.

• **Ppk =** uses the overall variation and is the current capability of your process if you do nothing and it staying in control.
Guidance for Non-Normal Data

(it’s more common than the name suggests)

- **Check your fit**
 - Too much data can make goodness of fit too sensitive
 - Use fat pencil test

- **Check your process**
 - Skewed or multi modal distributions may be from blended process

- **Check your data**
 - Being skewed may be from bad data entry or sensor issues

- **Find a non-normal distribution**
 - Weibull and Lognormal common ones to use
 - Note: Cpk will not be calculated for Non-normal data

- **Last resort: Transform with Box Cox or Johnson**
 - Can get you a Ppk number but much of the valuable information and "relatable representation" of the data is destroyed.
Live Case Studies

Standard Analysis (such a thing?)

Between Within
(such as multiple feature groups)
RM13006 Sect 9.1.2)

Large scale capability analysis
(such as full CMM inspections)
Summary

Have quality data you can trust (MSA and data clean up)

Have enough data that you have appropriately narrow confidence intervals and capture correct process variability

Choose the correct distribution

- Pre: use goodness of fit tests, quantile plots
- Post: expected vs observed outputs

Make sure your process is stable (Control Charts)

Choose the appropriate capability Indices to evaluate your process (Ppk should be the starting point, explains how your current process will perform overall)

Track and improve!
<table>
<thead>
<tr>
<th>NO.</th>
<th>FUTURE WEBINAR TOPICS</th>
<th>TARGET DATE/TIME</th>
<th>WEBINAR LEAD</th>
<th>SUPPORTING SUB-TEAM</th>
<th>BRIEF DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>What makes a good Process Capability Study?</td>
<td>1/26/2023 (11 AM U.S. Eastern)</td>
<td>Steve Hampton</td>
<td>Marnie Ham/Karen Scavotto</td>
<td>Cpk values are only as good as what goes into the data used to calculate Cpk, such as the adequacy of the measurement system and achieving statistical control.</td>
</tr>
<tr>
<td>3</td>
<td>Process Capability Study for True Position (handling MMC)</td>
<td>2/8/2023 (11 AM U.S. Eastern)</td>
<td>Grant Braun</td>
<td>Karen Scavotto/Marnie Ham/Shailesh Shinde/Andrew Stout</td>
<td>How do we handle process capability for one-sided or unilateral tolerances such as true position where Maximum Material Condition modifiers may play a role?</td>
</tr>
<tr>
<td>4</td>
<td>The use of non-statistically based process control methods</td>
<td>3/8/2023 (11 AM U.S. Eastern)</td>
<td>Paul Gorg</td>
<td>Pete Teti/Earl Capozzi/Rudi Braunieder/Nicklas Godebu</td>
<td>Process controls need not only be statistically based. Here we explore non-statistical methods such as error-proofing devices, the PreControl method, and the use of run charts with non statistical limits.</td>
</tr>
<tr>
<td>5</td>
<td>The Power of Precontrol</td>
<td>4/11/2023 (11 AM U.S. Eastern)</td>
<td>Andrew Stout</td>
<td>Steve Hampton/Geoffrey Carpenter</td>
<td>PreControl is a powerful non-statistical tool that is easy to get up and running with that can be used to qualify the set-up of a lot as well as a control for the production run.</td>
</tr>
<tr>
<td>6</td>
<td>The One-Hour Process Control Assessment</td>
<td>5/16/2023 (11 AM U.S. Eastern)</td>
<td>Pete Teti</td>
<td>Geoffrey Carpentier</td>
<td>If you were visiting a supplier and only had time to carve out one hour for a process control assessment, what questions would you ask and where would you ask those questions to?</td>
</tr>
<tr>
<td>7</td>
<td>Why is statistical control a prerequisite for process capability?</td>
<td>Target 2nd Qtr (June)</td>
<td>Marnie Ham</td>
<td>Andrew Stout/Geoffrey Carpenter/Douglas Dush</td>
<td>Process Capability indexes without the use of SPC Control Charts are invalid. Control Charts are the method to monitor and control a process and are a key prerequisite prior to calculating Cp & Cpk.</td>
</tr>
<tr>
<td>8</td>
<td>Dealing with Non-Normal Data</td>
<td>Target 3rd Qtr (September)</td>
<td>Karen Scavotto</td>
<td>Marnie Ham/Shailesh Shinde/Andrew Stout</td>
<td>What happens when the data coming from a process is non-normal? What can be done to accurately assess process capability? We will show you!</td>
</tr>
<tr>
<td>9</td>
<td>Conducting capability studies for one-sided geometric tolerances</td>
<td>Target 4th Qtr (October)</td>
<td>Karen Scavotto</td>
<td>Marnie Ham/Shailesh Shinde/Andrew Stout</td>
<td>Aerospace component manufacturers the world over deal with geometric/one-sided features such as runout, flatness, etc. What rules have to change when assessing process capability?</td>
</tr>
</tbody>
</table>

Look for these future topics in the “Upcoming Events” page on the AESQ website:

https://aesq.sae-itc.com/interest-groups
Q & A SESSION

USE THE “CHAT” FUNCTION TO ASK A QUESTION…
SUMMARY

All resources will be available on the AESQ website within a few days.

An email will be sent to all registrants with a link.
THANK YOU FOR PARTICIPATING