

PROCESS CAPABILITY FOR UNILATERAL TOLERANCES INCLUDING TRUE POSITION

Tools & Tips Webinar sponsored by the AESQ Process Control Methods SMIG 8th February 2023

CAPABILITY FOR UNILATERAL Agenda – 60 minutes

Overview – P. Teti

Who is the PCM Subject Matter Interest Group – P. Teti Why this webinar? Where can we find help? PCM Community of Practice – Linked In Process Capability – A. Stout Non-normal – A. Stout Capability for Unilateral Tolerances – A. Stout Capability for True Position – A. Stout Q&A – PCM SMIG Team Summary and Close – P. Teti

Andrew Stout MBB, + Pratt & Whitney Canada

Pete Teti Fellow, Quality Engineering Pratt and Whitney

WEBINAR OVERVIEW

We are **recording** today's webinar and will distribute the video link following the close of the webinar. It will also be posted on the AESQ website for free viewing.

We will take **questions** during today's webinar using the **Chat** feature.

Please remain on Mute during the presentation to prevent background noise. We will also be muting all lines at the start of the session.

CAPABILITY FOR UNILATERAL *Why this webinar?*

Communicate how to conduct a robust Process Capability study that meets RM13006 guidelines

Show how to use statistical tools in conducting and analyzing a Process Capability Analysis

Promote the available free documents and tools that can be used by any AESQ supplier

Answer questions suppliers may have about process capability methods

PROCESS CONTROL METHODS PER RM13006 *Purpose of this reference manual*

RM13006 provides the user with an array of practical approaches to process control used to ensure consistent product quality.

The purpose of this reference manual is to raise the overall capability of the aerospace engine supply chain, standardize the process control requirements across AESQ suppliers, and build on the requirements for PFMEA and Control Plans (ref. RM13004).

RM13006 supports AS9145 - Requirements for Advanced Product Quality Planning and Production Part Approval Process, and AS9103 -Variation Management of Key Characteristics, supported by detailed guidance and case studies.

This reference manual was developed by a dedicated team from AESQ member companies with expert knowledge and experience in the areas of process control, process improvement, quality systems, and supplier engagement.

 ARTOSPACE
 ATTOSP

 TATUST
 TatuS

 ARTOSPACE
 <

Æ

PROCESS CONTROL METHODS SUPPORT

What is the Process Control Methods SMIG Group?

- The purpose of the PCM Subject Matter Interest Group is to promote the effective deployment of the process control methods across the AESQ Supply Chain.
- The Group is made up of Subject Matter Experts from the AESQ Member Companies.
- The Group is accountable for the AS13100 related Requirements and associated Reference Manual content, ensuring that it is up to date and reflects current knowledge and best practice.
- It shall promote the effective deployment of the Reference Manual using Communities of Practice (CoP). The CoP is open to any subject matter expert or individual experienced or trained in process control from the aero engine community.
- Activities may include webinars, best practice sharing, development of shared training materials, conferences and published papers.

NO.	WEBINAR TOPICS	TARGET DATE/TIME
1	Process Control Methods - What is RM13006? Interaction with other AESQ Reference Manuals	12/6/2022 (11 AM US Eastern)
2	What makes a good Process Capability Study?	1/26/2023 (11 AM U.S. Eastern
3	Process Capability for Unilateral Tolerances	2/8/2023 (11 AM U.S. Eastern)
4	The use of non-statistically based process control methods	3/8/2023 (11 AM U.S. Eastern)
5	The Power of Precontrol	4/11/2023 (11 AM U.S. Eastern)
6	The One-Hour Process Control Assessment	5/16/2023 (11 AM U.S. Eastern)
7	Why is statistical control a prerequisite for process capability?	Target 2nd Qtr (June)
8	Dealing with Non-Normal Data	Target 3rd Qtr. (September)
9	Conducting capability studies for one- sided geometric tolerances	Target 4th Qtr. (October)

https://aesq.saeitc.com/interest-groups

AESQ – Aerospace Engine Supplier Quality Strategy Group

SUBJECT MATTER INTEREST GROUPS

Who is the Process Control Methods SMIG Team?

AESQ – Aerospace Engine Supplier Quality Strategy Group

PROCESS CONTROL METHODS CoP

Where to get help

AESQ Supplementary Materials webpage for a copy of RM13000 and supporting templates

https://aesq.sae-itc.com/supplemental-material

Subject Matter Interest Group – meets monthly – supports continuous improvement of RM13006 and supporting templates & tools

AESQ Process Control Methods Community of Practice (CoP) on Linked-In

Current membership is 200 – let's get some more!!

https://www.linkedin.com/groups/12647920/

AESQ – Aerospace Engine Supplier Quality Strategy Group

PROCESS CAPABILITY IN RM13006

SECTIONS INVOLVING PROCESS CAPABILITIES IN RM13006

• 2.1.1	IMPORTANCE OF PRODUCT CAPABILITY	

- 3.3 CHOICE OF CAPABILITY METRIC
- 5.3 PROCESS CAPABILITY FOR PROCESSES WITH INTENTIONAL SHIFTS

6.0 **PROCESS CAPABILITY INDICES**

- 6.1 FUNDAMENTALS OF VARIABLE DATA
- 6.2 PROCESS STABILITY IN PRACTICE
- 6.3 PROCESS CAPABILITY FOR ATTRIBUTE DATA

▶ 7.0

- 7.2 CAPABILITY ANALYSIS FOR NON-NORMAL DATA
- 9.1.2 PROCES CAPABILITY FOR MULTIPLE IDENTICAL FEATURES
- 11 DATA ANALYSIS ENABLERS
- 13 STATISTICAL FORMULAE FOR PROCESS CAPABILITY

GUIDANCE FOR NON-NORMAL DATA

+ New material for future update

AESQ – Aerospace Engine Supplier Quality Strategy Group

THE IMPORTANCE OF PROCESS CAPABILITY

Why does Process Capability matter?

- It gives a voice to your process from the viewpoint of the customer
- It gives you a number to evaluate your process
- It lets you know your potential (compare Ppk to Cpk to Cp)
- It lets you know where to spend your resources and be proactive

Before looking at capability

- Can you trust your measurements? (MSA)
- Can you can trust your data? (visualize)
- Do you have enough data to capture full process variation?

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

- Is the data in time order?
- Is the process in statistical control?

May be a trend at the start. Investigate prior to starting capability analysis. X Bar

Red alert! Need to investigate shift before doing a capability analysis.

To get an <u>estimate</u> of capability it may be acceptable to allow up to 2 "out of control" points, per 25. Every effort should be made to identify the root cause and correct it. <u>The real world is not so pretty.</u>

AESQ – Aerospace Engine Supplier Quality Strategy Group

Distributions can differ in:

LOCATION SPREAD SHAPE

This one is not normal!

Normal Distribution

- The shape of a histogram can provide important information about the presence of assignable causes and variation
- The Normal distribution (bell-curve) frequently occurs when the process is subjected only to random variation (common causes)

Bimodal Distribution

- The histogram exhibits two "humps" (NOT a normal distribution)
- Normal probability plot shows a poor fit to the confidence interval

Skewed Distribution

- Not symmetrical, NOT a normal distribution
- One tail is longer than the other
- Skewing is said to be in the direction of the longer tail
- Could be due to unilateral tolerance

AESQ – Aerospace Engine Supplier Quality Strategy Group

Truncated Distributions

- A distribution in which one or both tails are missing (NOT a normal distribution)
- The histogram either begins or ends abruptly

• Distribution fit

 Using Normal for Non-Normal data will provide incorrect and misleading capability values

Process Capability Report for Flatness

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

- Assessing Normality
 - A large amount of data can make goodness of fit too sensitive
 - Visually review of histogram
 - Probability plot shows a good fit, especially in area of risk (near spec limit)
 - p-value > 0.05 for Normal
 - Anderson Darling Number (AD or A** or A square) preferably < 0.75
 - Or other statistic (RJ, K-S, S-W, AIC,...)

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

RM13006 Section 7 – Guidance for Non-Normal Data

Causes of Non-Normal include

- Natural skew due to a boundary condition
- Data from two or more components of variation (e.g., true position of a hole from x and y coordinates)
- A cyclic process behaviour
- A process with a natural tendency to drift
- Selective or biased measurements
- Process instability lack of control
- Lack of resolution in measurement systems or rounding
- Reworking non-conformances prior to measurement
- Human factors (e.g., stopping at a maximum limit when machining down to a size)
- Two distributions being present within the data (i.e., bi-modal).

Actions

- Check your process
- Check your data (at least 30)
- Find a non-normal distribution with better fit
- Weibull is often used
 - Zero values will need McAdam shift (see RM13006 section 7.2.2)
- Capability
 - Z-score method that uses proportions
 - ISO method uses 0.135 or 99.865 percentiles
 - Special cases
- Last resort: Transform with Box Cox or Johnson

For more

- See RM13006 section 7
- Attend our Webinar #8 Dealing with Non-Normal Data

Note: Standard Deviation (SD or σ) is not applicable for non-normal distributions.

Change all Zero's to 20% of the smallest resolution

This correctly represents the first resolution value (not possible to get less than zero!)

99.865 Percentile or equivalent 3 Sigma

AESQ – Aerospace Engine Supplier Quality Strategy Group

ONE SIDED TOLERANCES

RM13006 Section 6. Process Capability Indices

"NOTE: It will <u>not be possible to calculate Cp or Pp</u> indices for processes with unilateral (single sided) tolerances as the <u>tolerance width cannot be defined</u>. However, Cpk and Ppk can be calculated from the Cpl/Ppl or Cpu/Ppu (whichever can be calculated)."

ONE SIDED TOLERANCES

Unilateral – Case 1: A natural or physical limit on lower side

- Don't analyze as 2 sided
- Example: Shaft runout would have a maximum spec, not to be exceeded. But runout cannot be less than zero
- When calculating capability leave LSL blank or identify it as a boundary

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

ONE SIDED TOLERANCES

Unilateral – Case 2: Lower spec only

Examples

- Min wall
- MTBF
- MTTF
- Horsepower

P_{pL} answers: Is the process likely to yield products with characteristics below the minimum allowable?

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

MAXIMUM MATERIAL CONDITION

(M) MMC - Maximum Material Condition

- Condition where the most material exists
- Greatest mass on feature
- Min ID
- Max OD
- If (M) on drawing, as the feature deviates from its Maximum Material Condition, that amount may be added to the positional tolerance

Ø2.00 +/-.040 ⊕ |Ø.060(M)|A|B

Dimensions in inches

Min ID is the MMC condition 2.000 - .040 = 1.960"

If Actual ID is 2.010" **MMC Bonus** = 2.010 – 1.960 = .050" dia Or .025" radial

TP tolerance with bonus = .060 + .050 = .110" Dia or .055" radial

AESQ – Aerospace Engine Supplier Quality Strategy Group

TRUE POSITION CAPABILITY

Special Case

How to analyse?

- TP Rad
- Adjusted TP
- Residual Tolerance
- Percent of Tolerance
- Effective Size to Virtual
- Area Method

X Axis

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

TRUE POSITION CAPABILITY

TP Rad

Using conventional radius/diameter analysis method

Good Weibull fit only occurs **only** when X & Y are on target.

Both X and Y axis are usually Normally distributed.

TP Rad is Non-Normally Distributed

Process Capability of TP_1 Calculations Based on Weibull Distribution Model

TP Rad = $\sqrt{x^2 + y^2}$ TP D

TP Dia = 2 * TP Rad

AESQ – Aerospace Engine Supplier Quality Strategy Group

TRUE POSITION CAPABILITY

Using TP Rad method

Capability Case 1 = Capability Case 2

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

Not the only way, but a new way to start to understand. Discussion, development and incorporation into RM13006 is pending.

Advantages of Area Method

- Good way to visualize and represent the true situation.
- Y Axis
- "Most methods combine the individual variable bonus tolerance with the individual position deviation and then compare the resulting surrogate variable to a constant limit...found to be untrustworthy" isixsigma.com
- "...the natural variability must also be expressed in terms of a circular region." infinityqs.com

X Axis

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and

confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

$$AreaP_p = \frac{\pi R^2}{\pi r^2} \qquad AreaPp = \frac{R^2}{(3s_{\max(x,y)})^2}$$

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

Area Pp without MMC Bonus

 $AreaPp = \frac{R^2}{(3s_{\max(x,y)})^2}$

Area Pp with MMC Bonus

 $AreaPp_{Bonus} = \frac{(R + 0.5 * Bonus_{Ave})^2}{(3\sqrt{s_{\max(x,y)}^2 + s_{Bonus}^2})^2}$

Area Ppk without MMC bonus

 $AreaPpk = \frac{R^2}{(\sqrt{X_{Ave}^2 + Y_{Ave}^2 + 3s_{\max(x,y)})^2}}$

Area Ppk with MMC Bonus

$$AreaPpk_{Bonus} = \frac{(R + 0.5 * Bonus_{Ave})^2}{(\sqrt{X_{Ave}^2 + Y_{Ave}^2} + 3\sqrt{s_{\max(x,y)}^2 + s_{Bonus}^2})^2}$$

PreControl type chart to monitor

- 1. Diameter
- 2. X-axis
- 3. Y-axis
- 4. TP Dia
- 5. X-Y Plot

AESQ – Aerospace Engine Supplier Quality Strategy Group

Example without Bonus

Feature Information									
CMM T		LK				eristic Ty		osition	
CMM S		7462-02				rance Dia	0.0	040	
Part Nu		ABC123	4		MMC fo	or FOS:			
Operatio		1210			Date:			-2005	
Sequen	ce:	4.25			Data Po	oints:	2	25	
Notes:		Data from bat	ch 43 ar	nd 44					
12-22-22-22	lations	X Value			alue		iltant	Diame	
	ean	-0.00024			83000		0634	0.2662	
Std. Dev	viation(s)	0.00052		0.0	00513	0.00	0428	0.000	
Maz	S(x.y)	Engr To Radius (1		Proces	s Center	3s Proc	ess (Pr)	Consume Radius (
0.00	00520	0.0020		0.0	00257	0.00	1559	0.001	316
		Area Pp					Area Ppk		
		1.65					1.21		
0.0020 - 0.0010 - 0.0000 -		(10-10-10 (G) (C)	Seq 4.2 Bonus) Tolerance Process V: (A.Pp) Consumed Tolerance Actuals	ariatio
-0.0020 -							- '	Area Pp Area Ppk Data Points	1.6 1.2 25
-0.0020 -									

	Data						
S/N er Value Value nt SN2000 0.26610 0.00000 0.00033 0.00033 SN2001 0.26620 0.00040 0.00020 0.00045 SN2002 0.26650 0.00020 0.00023 0.00045 SN2003 0.26650 0.00020 0.00026 0.00051 SN2004 0.26650 0.00020 0.00023 0.00023 SN2005 0.26620 0.00000 0.00023 0.00023 SN2006 0.26620 0.00003 0.00024 0.00024 SN2007 0.26630 0.00030 0.00024 0.00024 SN2008 0.26630 0.00030 0.00026 0.00071 SN2008 0.26640 0.00000 0.00076 0.00076 SN2019 0.26640 0.00030 0.00076 0.00076 SN2012 0.26650 0.00020 0.00028 0.00076 SN2014 0.26650 0.00020 0.00076 0.00076 SN2015 0.26640			Data				
er Value va	SIN				Resulta		
SN2001 0.26620 0.00040 0.00020 0.00045 SN2002 0.26620 -0.00030 0.00020 0.00028 SN2002 0.26620 -0.00030 0.00028 0.00028 SN2004 0.26620 0.00050 0.00027 0.00028 SN2004 0.26620 0.00020 0.00028 0.00028 SN2006 0.26620 0.00030 0.00038 0.00030 0.00045 SN2006 0.26630 0.00030 0.00030 0.00042 SN2007 0.26630 0.00010 0.00070 0.00042 SN2007 0.26640 0.00030 -0.00440 0.00044 0.00044 SN2010 0.26640 0.00030 -0.00440 0.00056 SN2011 0.26640 0.00050 0.00076 0.00076 SN2012 0.26630 -0.00030 -0.00070 0.00076 SN2014 0.26650 -0.00030 -0.00070 0.00068 SN2015 0.26610 -0.00030 -0.00070 0.00065							
SN2002 0.26620 -0.00030 0.00020 0.00036 SN2003 0.26650 0.00020 0.00020 0.00028 SN2004 0.26650 0.00020 0.00050 0.00071 SN2005 0.26650 0.00020 0.00023 0.00023 SN2006 0.26620 -0.00030 0.00023 0.00023 SN2006 0.26620 -0.00030 0.00024 0.00024 SN2006 0.26620 -0.00030 0.00045 0.00030 0.00045 SN2008 0.26640 0.00000 -0.00070 0.00071 0.00071 SN2019 0.26640 0.00030 -0.0040 0.00040 0.00040 SN2011 0.26650 -0.00020 0.00076 0.00076 0.00076 SN2012 0.26650 -0.00020 0.00020 0.00078 0.00016 SN2015 0.26640 -0.00030 -0.00070 0.00016 SN2016 0.26640 -0.00030 -0.00080 0.00085 SN2018 0.26					0.000.000.000.000		
SN2003 0.26650 0.00020 -0.00020 0.00028 SN2004 0.26620 -0.00050 0.00026 0.00028 SN2004 0.26620 -0.00050 0.00028 0.00028 SN2005 0.26620 0.00020 0.00028 SN2007 0.26630 0.00030 0.00028 SN2007 0.26630 0.00030 0.00070 0.00071 SN2008 0.26640 0.00010 -0.00070 0.00071 SN2008 0.26640 0.00000 -0.00040 0.00041 SN2010 0.26640 0.00000 -0.00040 0.00076 SN2010 0.26640 0.00030 -0.00070 0.00076 SN2012 0.26650 -0.00030 -0.00070 0.00076 SN2011 0.26650 -0.00030 -0.00070 0.00016 SN2011 0.26650 -0.00020 0.00028 SN2015 0.26650 -0.00030 -0.00070 0.00018 SN2016 0.26640 -0.00030 0.00088 SN2016 0.26640 -0.00030 -0							
SN2004 0.26620 0.00050 0.00050 0.00071 SN2005 0.26620 0.00020 0.00020 0.00028 SN2005 0.26620 0.00020 0.00030 0.00035 SN2007 0.26630 0.00030 0.00042 SN2007 0.26630 0.00030 0.00042 SN2008 0.26630 0.00030 0.00044 SN2010 0.26640 0.00030 0.00044 SN2010 0.26640 0.00030 0.00040 SN2011 0.26640 0.00030 0.00040 SN2012 0.26630 0.00030 0.00070 0.00076 SN2012 0.26630 0.00003 0.00070 0.00075 SN2013 0.26650 0.00040 0.00080 0.00083 SN2014 0.26640 0.000080 0.00083 0.00083 SN2015 0.26640 0.00080 0.00085 SN2010 0.00084 0.00086 SN2016 0.26630 0.00040 0.00070 0.00085 <							
SN2005 0.26620 0.00020 0.00020 0.00028 SN2006 0.26820 -0.00080 0.00030 0.00082 SN2006 0.26820 -0.00080 0.00030 0.00082 SN2007 0.26830 -0.00010 -0.00070 0.00047 SN2008 0.26840 6.00000 -0.00040 0.00067 SN2019 0.26840 6.00003 -0.00040 0.00065 SN2010 0.26840 6.00003 -0.00040 0.00055 SN2011 0.26860 -0.00030 -0.00070 0.00076 SN2012 0.26850 -0.00030 -0.00070 0.00028 SN2013 0.26850 -0.00040 -0.00010 0.00028 SN2014 0.26810 -0.00080 0.00088 0.00088 SN2015 0.26840 -0.00080 0.00088 0.00088 SN2016 0.26840 -0.00070 0.00088 SN2018 0.26840 -0.00080 0.00088 SN2018 0.26840 -0.00040 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>							
SN2006 0.26620 0.00080 0.00030 0.00035 SN2007 0.26830 0.00030 0.00030 0.00075 SN2007 0.26830 0.00010 0.00071 0.00071 SN2009 0.26840 0.00001 0.00071 0.00071 SN2010 0.26840 0.00030 0.00040 0.00060 SN2010 0.26840 0.00030 0.00070 0.00050 SN2011 0.26840 0.00030 0.00070 0.00075 SN2012 0.26850 0.00000 0.00070 0.00075 SN2013 0.26850 0.00040 0.00000 0.00075 SN2014 0.26850 0.00040 0.00010 0.00085 SN2016 0.26840 0.000030 0.00085 SN2016 0.26840 0.000080 0.00085 SN2018 0.26840 0.000040 0.00070 0.00085 SN2018 0.26830 0.000100 0.00075 SN2012 0.26830 0.00010 0.00015 SN2019							
SN2007 0.26630 0.00030 -0.00030 0.00042 SN2008 0.26630 -0.00010 -0.00070 0.00042 SN2008 0.26630 -0.00010 -0.00040 0.00044 SN2010 0.26640 0.000030 -0.00040 0.00050 SN2010 0.26640 -0.00050 -0.00040 0.00050 SN2011 0.26650 -0.00050 -0.00070 0.00075 SN2012 0.26650 -0.00020 0.00028 -0.00070 0.00076 SN2013 0.26650 -0.00040 -0.00070 0.00058 -0.00070 0.00058 SN2015 0.26640 -0.00080 -0.00070 0.00058 -0.00070 0.00058 SN2016 0.26640 -0.00080 -0.00070 0.00058 SN2018 0.26630 -0.00040 -0.00070 0.00058 SN2018 0.26630 -0.00020 0.00070 0.00058 SN2019 0.26630 -0.00070 0.00071 SN2019 0.26630 -0.00010 0.							
SN2008 0.26630 -0.00101 -0.00070 0.00071 SN2009 0.26640 0.00000 -0.00440 0.00001 SN2019 0.26640 0.00000 -0.00440 0.00050 SN2010 0.26640 0.00030 -0.00440 0.00050 SN2011 0.26650 -0.00030 -0.0070 0.00075 SN2012 0.26630 -0.00030 -0.0070 0.00025 SN2013 0.26650 -0.00040 0.00020 0.00025 SN2014 0.26650 -0.00040 0.000010 0.00025 SN2015 0.26640 -0.00030 -0.00070 0.00085 SN2016 0.26640 -0.00030 -0.00080 0.00085 SN2017 0.26630 -0.00030 -0.00070 0.00018 SN2018 0.26640 -0.00080 0.00035 0.00021 0.00075 SN2018 0.26630 -0.00060 0.00070 0.00175 SN2021 0.26630 -0.00160 0.00075 SN2021 <							
SN2003 0.26640 0.00000 -0.00440 0.00040 SN2010 0.26640 0.00030 -0.00440 0.00050 SN2010 0.26640 0.00030 -0.00040 0.00050 SN2011 0.26650 -0.00050 0.00057 0.00057 SN2013 0.26650 -0.00040 0.00020 0.00025 SN2014 0.26650 0.00040 0.00010 0.00041 SN2015 0.26650 0.00040 -0.00030 0.00043 SN2016 0.26640 -0.00030 -0.00070 0.00085 SN2016 0.26640 -0.00030 -0.00070 0.00085 SN2018 0.26640 -0.00030 -0.00070 0.00085 SN2018 0.26630 -0.00010 0.00070 0.00075 SN2019 0.26630 -0.00010 0.00017 SN2012 0.26630 -0.00010 0.00175 SN2021 0.26630 0.000010 0.00010 SN20100 0.00000 SN20020 0.26630 0.00000							
SN2010 0.26640 0.00030 -0.00440 0.00050 SN2011 0.26620 -0.00160 0.00050 0.00185 SN2011 0.26620 -0.00160 0.00050 0.00185 SN2013 0.26650 -0.00020 0.00026 0.00028 SN2014 0.26650 -0.00040 0.00016 0.00014 SN2015 0.26650 -0.00040 -0.00080 0.00028 SN2015 0.26650 -0.00030 -0.00080 0.00016 SN2015 0.26640 -0.00080 -0.00080 0.00016 SN2018 0.26640 -0.00040 -0.00080 0.00026 SN2018 0.26640 -0.00040 -0.00080 0.00026 SN2018 0.26640 -0.00040 -0.00070 0.000175 SN2019 0.26630 -0.00040 -0.00070 0.000175 SN2020 0.26630 -0.00010 0.00010 0.000175 SN2021 0.26630 -0.00010 0.00010 0.00000 <							
SN2011 0.26620 -0.00160 0.00050 0.00168 SN2012 0.26830 -0.00030 -0.00070 0.00078 SN2013 0.26850 -0.00020 0.00020 0.00028 SN2014 0.26850 -0.00020 0.00020 0.00028 SN2015 0.26850 -0.00040 0.00010 0.00041 SN2016 0.26840 -0.00030 -0.00080 0.00085 SN2017 0.26620 -0.00030 -0.00070 0.00085 SN2018 0.26840 -0.00040 -0.00070 0.00028 SN2019 0.26840 -0.00040 -0.00070 0.00028 SN2019 0.26840 -0.00040 -0.00070 0.00018 SN2019 0.26830 -0.00040 -0.00070 0.00018 SN2019 0.26830 -0.00070 0.00015 SN2021 0.26830 -0.00010 0.00100 SN2021 0.26830 0.00000 0.00000 0.00000 0.00000 SN2022 0.26830							
SN2012 0.26630 -0.00030 -0.00070 0.00076 SN2013 0.26850 -0.00020 0.00020 0.00028 SN2014 0.26850 -0.00020 0.00028 0.00014 SN2015 0.26850 0.00040 0.00018 0.00014 SN2016 0.26840 -0.00030 -0.00070 0.00018 SN2016 0.26840 -0.00030 -0.00070 0.00018 SN2017 0.26840 -0.00030 -0.00070 0.00018 SN2018 0.26840 -0.00020 0.00028 0.00018 SN2019 0.26830 -0.00010 0.00016 0.00071 0.00018 SN2012 0.26830 -0.00010 0.00017 0.00175 SN2021 0.26830 0.00010 0.001010 0.00101 SN2022 0.26830 0.00000 0.000000 0.00000 SN2022 0.26830 0.000010 0.001010 SN2023 0.26830 0.00000 0.000010 SN2022 0.26830 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>							
SN2013 0.26650 -0.00020 0.00020 0.00028 SN2014 0.26650 0.00040 0.000140 0.00041 SN2014 0.26650 -0.00040 0.00083 0.00083 SN2016 0.26640 -0.00080 -0.00080 0.00085 SN2017 0.26620 -0.00030 -0.00080 0.00085 SN2018 0.26640 -0.00040 -0.00070 0.00076 SN2019 0.26630 -0.00020 0.00030 0.00035 SN2019 0.26630 -0.00040 0.00030 0.00035 SN2019 0.26630 -0.00010 0.000170 0.000175 SN2020 0.26630 -0.00010 0.00010 0.00010 SN2021 0.26630 0.000010 0.00010 0.00000 SN2022 0.26630 0.000000 0.000000 0.000000 SN2022 0.26630 0.000010 0.000000 0.000000 SN2023 0.26630 0.000010 0.000030 0.00030							
SN2014 0.26650 0.00040 0.00010 0.00041 SN2015 0.26610 -0.00040 -0.00080 0.00089 SN2016 0.26640 -0.00080 0.00089 0.00089 SN2017 0.26620 -0.00030 -0.00080 0.00085 SN2018 0.26640 -0.00040 -0.00070 0.00018 SN2019 0.26630 -0.00040 -0.00070 0.00018 SN2019 0.26630 -0.00060 0.00070 0.00015 SN2020 0.26630 -0.00016 0.00070 0.00116 SN2021 0.26630 -0.00010 0.00100 0.00101 SN2022 0.26630 0.00000 0.00000 0.00000 SN2023 0.26630 0.00010 0.00100 SN2023 0.26630 0.00000 0.00003							
SN2015 0.26610 -0.00040 -0.00080 0.00089 SN2016 0.26840 -0.00080 -0.00070 0.00165 SN2017 0.26820 -0.00030 -0.00070 0.00085 SN2018 0.26840 -0.00040 -0.00070 0.00085 SN2019 0.26630 -0.00020 0.00030 0.00075 SN2020 0.26830 -0.00010 0.00175 SN2021 0.26630 0.00010 0.00100 SN2021 0.26630 0.00010 0.00100 0.00100 0.00100 SN2022 0.26630 0.000010 0.00100 0.00100 SN2022 0.26630 0.00010 0.00100 0.00100 SN2022 0.26630 0.00010 0.00010 0.00010							
SN2016 0.26640 -0.00080 -0.00070 0.00106 SN2017 0.26620 -0.00030 -0.00080 0.00085 SN2018 0.26640 -0.00030 -0.00070 0.00085 SN2019 0.26630 -0.00020 0.00036 0.00036 SN2019 0.26630 -0.00020 0.00030 0.00075 SN2020 0.26630 -0.00010 0.00175 SN2022 0.26630 -0.00010 0.00100 SN2021 0.26630 0.00000 0.00000 0.00000 0.00000 SN2022 0.26630 0.00000 0.00000 0.00000 SN200000 SN20000 0.00000 SN20000 SN20000 0.00000 SN20000 SN200000 SN200000 SN20000 SN200000 SN20000 SN200000 SN200000 SN2000000 SN2000000 SN200000 SN20000000 SN2000000 SN2000000 SN200000000							
SN2017 0.26620 -0.00030 -0.00080 0.00085 SN2018 0.26640 -0.00040 -0.00070 0.00085 SN2019 0.26630 -0.00040 0.00030 0.00028 SN2019 0.26630 -0.00070 0.00015 SN2020 0.26630 -0.00010 0.00010 0.00105 SN2021 0.26630 -0.00010 0.00100 0.00100 SN2022 0.26630 0.00000 0.00000 0.00000 SN2023 0.26630 0.00010 -0.00030 0.00023							
SN2018 0.26640 -0.00040 -0.00070 0.00081 SN2019 0.26630 -0.00020 0.00030 0.00081 SN2020 0.26630 -0.00160 0.00070 0.00175 SN2021 0.26630 -0.00060 0.00070 0.00175 SN2021 0.26630 -0.00010 0.00110 0.00110 SN2022 0.26630 0.00000 0.00000 0.00000 SN2022 0.26630 0.00010 0.00000 0.00000 SN2022 0.26630 0.00010 -0.00030 0.00023							
SN2019 0.26630 -0.00020 0.00030 0.00036 SN2020 0.26630 -0.00160 0.00070 0.00175 SN2021 0.26630 -0.00100 0.00100 0.00100 SN2022 0.26630 0.00000 0.00000 0.00000 SN2022 0.26630 0.00000 0.00000 0.00000 SN2023 0.26630 0.00000 0.00000 0.00003							
SN2020 0.26630 -0.00160 0.00070 0.00175 SN2021 0.26630 -0.00010 0.00110 0.00110 SN2022 0.26630 0.00000 0.00000 0.00000 SN2023 0.26630 0.00000 0.00000 0.00000 SN2023 0.26630 0.00010 -0.00030 0.00032							
SN2021 0.26630 -0.00010 0.00110 0.00110 SN2022 0.26630 0.00000 0.00000 0.00000 SN2023 0.26630 0.0010 -0.00030 0.00032							
SN2022 0.26630 0.00000 0.00000 0.00000 SN2023 0.26630 0.00010 -0.00030 0.00032							
SN2023 0.26630 0.00010 -0.00030 0.00032							
SN2024 0.26630 0.00030 0.00010 0.00032 Image: SN2024 Image: SN2024							
	SN2024	0.26630	0.00030	0.00010	0.00032		
	-		-				
	-	-					
		_					
			1	_			
				_			
				_			
			1				
			1				

Example with Bonus

Special recognition goes to Paul McAdam, retired P&WC Quality Fellow, who did most of the development of these methods.

Data					
S/N Diameter X Value			Y ¥alue	Bonus	
SN3000	0.26610	0.00000	0.00030	nt 0.00030	(radial 0.00008
SN3000	0.26620	-0.00040	-0.00020	0.00030	0.0000
SN3001	0.26620	-0.00040	0.00020	0.00045	0.00010
SN3002	0.26620	0.00020	-0.00020	0.00038	0.0001
SN3003	0.26650	-0.00050	0.00020	0.00028	0.0002
SN3004 SN3005	0.26620	0.00050	0.00050	0.00071	0.0001
SN3006	0.26620	-0.00080	0.00030	0.00085	0.00010
SN3007	0.26630	0.00030	-0.00030	0.00042	0.00015
SN3008	0.26630	-0.00010	-0.00070	0.00071	0.00015
SN3009	0.26640	0.00000	-0.00040	0.00040	0.0002
SN3010	0.26640	0.00030	-0.00040	0.00050	0.0002
SN3011	0.26620	-0.00160	0.00050	0.00168	0.0001
SN3012	0.26630	-0.00030	-0.00070	0.00076	0.0001
SN3013	0.26650	-0.00020	0.00020	0.00028	0.0002
SN3014	0.26650	0.00040	0.00010	0.00041	0.0002
SN3015	0.26610	-0.00040	-0.00080	0.00089	0.0000
SN3016	0.26640	-0.00080	-0.00070	0.00106	0.0002
SN3017	0.26620	-0.00030	-0.00080	0.00085	0.0001
SN3018	0.26640	-0.00040	-0.00070	0.00081	0.0002
SN3019	0.26630	-0.00020	0.00030	0.00036	0.0001
SN3020	0.26630	-0.00160	0.00070	0.00175	0.0001
SN3021	0.26630	-0.00010	0.00110	0.00110	0.0001
SN3022	0.26630	0.00000	0.00000	0.00000	0.0001
SN3023	0.26630	0.00010	-0.00030	0.00032	0.0001
SN3024	0.26630	0.00030	0.00010	0.00032	0.0001
				-	-
			-		-
			-		
			s		-
			-		
		-			-
			-		
			-		

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

SUMMARY

Have quality data you can trust (MSA) Have enough data to capture full process variability Make sure your process is stable (Control Charts) Choose the correct distribution Choose the appropriate capability Indices to evaluate your process (Ppk preferred, Area Method for TP) Track and improve!

FUTURE WEBINARS

From the Process Control Methods SMIG Group

https://aesq.saeitc.com/interestgroups

NO.	WEBINAR TOPICS	TARGET DATE/TIME	WEBINAR LEAD	SUPPORTING SUB- TEAM	BRIEF DESCRIPTION
1	Process Control Methods - What is RM13006? Interaction with other AESQ Reference Manuals	12/6/2022 (11 AM US Eastern)	Pete Teti	Nicklas Godebu/Marnie Ham	Overview of RM13006 and how it interacts with other AS13100 reference manuals.
2	What makes a good Process Capability Study?	1/26/2023 (11 AM U.S. Eastern)	Steve Hampton	Marnie Ham/Karen Scavotto	Cpk values are only as good as what goes into the data used to calculate Cpk, such as the adequacy of the measurement system and achieving statistical control.
3	Process Capability for Unilateral Tolerances including True Position	2/8/2023 (11 AM U.S. Eastern)	Andrew Stout	Grant Braun Karen Scavotto Shailesh Shinde	How do we handle process capability for one-sided or unlateral tolerances including true position where Maximum Material Condition modifiers may play a role.
4	The use of non-statistically based process control methods	3/8/2023 (11 AM U.S. Eastern)	Paul Gorg	Pete Teti/Earl Capozzi/Rudi Braunieder/Nicklas Godebu	Process controls need not only be statistically based. Here we explore non-statistical methods such as error-proofing devices, the PreControl method, and the use of run charts with non statistical limts.
5	The Power of Precontrol	4/11/2023 (11 AM U.S. Eastern)	Andrew Stout	Steve Hampton/Geoffrey Carpentier	PreControl is a powerpul non-statistical tool that is easy to get up and running with that can be used to qualify the set-up of a lot as well as a control for the production run.
6	The One-Hour Process Control Assessment	5/16/2023 (11 AM U.S. Eastern)	Pete Teti	Geoffrey Carpentier	If you were visiting a supplier and only had time to carve out one hour for a process control assessment, what questions would you ask and where whom would you ask those questions to?
7	Why is statistical control a prerequisite for process capability?	Target 2nd Qtr (June)	Marnie Ham	Andrew Stout/Geoffrey Carpentier/Douglas Dush	Process Capability indexes without the use of SPC Control Charts are invalid. Control Charts are the method to monitor and control a process and are a key prerequisite prior to calculating Cp & Cpk.
8	Dealing with Non-Normal Data	Target 3rd Qtr. (September)	Karen Scavotto	Marnie Ham/Shailesh Shinde/Andrew Stout	What happens when the data coming from a process is non-normal? What can be done to accurately assess process capability? We will show you!
9	Conducting capability studies for one- sided geometric tolerances	Target 4th Qtr. (October)	Karen Scavotto	Marnie Ham/Shailesh Shinde/Andrew Stout	Aerospace component manufacturers the world over deal with geometric/one-sided features such as runout, flatness, etc. What rules have to change when assessing process capability?

AESQ – Aerospace Engine Supplier Quality Strategy Group

Q & A SESSION

USE THE "CHAT" FUNCTION TO ASK A QUESTION...

SUMMARY

All resources will be available on the AESQ website within a few days.

An email will be sent to all registrants with a link.

THANK YOU FOR PARTICIPATING

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.