

AS13100 DESIGN FMEA REQUIREMENTS WEBINAR

Rob Farndon Chief of Mechanical Systems Rolls-Royce Civil Aerospace

Andrea Neumann Safety and Certification Engineer, Airworthiness MTU

June 22nd 2022

Webinar Overview

We are **recording** today's webinar and will distribute the video link following the close of the webinar. It will also be posted on the AESQ website for free viewing.

We will take **questions** during today's webinar using the **Chat** feature.

Please remain on Mute during the presentation to prevent background noise. We will also be muting all lines at the start of the session.

RM13004 DESIGN FMEA Webinars

June 22nd & 23rd 2022

AS13100 & RM13004 DESIGN FMEA - Understanding the Requirements

Led by Rob Farndon, these interactive webinars are designed to describe the intent of the AESQ AS13100 requirements for Design FMEAs and how they link to the effective deployment of Advanced Product Quality Planning (APQP) and a Zero Defect Strategy.

These webinars shall explain how AS13100 Design FMEA can be developed, maintained and improved using real examples of best practice from across the industry.

SESSION 1 AS13100 DFMEA Requirements and Overview (June 22 nd 14.00 – 16.00 UK Time)	SESSION 2 Key Care Points when Creating the Design FMEA (June 23rd 14.00 – 16.00 UK Time)
Overview of the requirements for Design FMEA in Chapter C of AS13100 and their link to the APQP / PPAP process	 A closer look at some of the key steps when creating Design FMEAs to illustrate the intent of the AS13100 requirements, including; a) Requirements & Potential Failure Modes
Explanation of the intent of each requirement and what success looks like	b) Potential Effects & Severity Ratingc) Potential Causes
Overview of the Design FMEA approach aligned to the RM13004 Reference Manual	 d) Prevention Controls & Occurrence Rating e) Detection Controls & Detection Rating f) Calculating the Risk Priority Number (RPN)
Links to further help and guidance	g) Prioritizing Improvements
Questions & Answers	Questions & Answers

Rob Farndon Introduction

- Worked for Rolls-Royce for 33 years.
- Career including Design Practitioner, Manager and Specialist roles in Civil Aerospace.
- Currently Chief of Mechanical Systems Capability .
- Design Process Specialist, and Subject Matter Expert for APQP/PPAP and Defect Prevention toolset including DFMEA.
- Led creation of design processes as part of RR Civil Aerospace APQP/PPAP transformation.
- Lead Design Coach for Civil Large Engines.
- Led authoring team for RM13004 and AS13100 DFMEA content.
- Deputy Team Leader for RM13004 Subject Matter Interest Group.

Andrea Neumann Introduction

- Worked for MTU Aero Engines AG for 2 years
- Career including Type Inspector for Propulsion Systems at German Military Airworthiness Authority
- Currently Safety- and Certification Engineer at Airworthiness Department MTU
- System Safety Assessment Specialist
- Subject Matter Expert for DFMEA
- Led process definition of interfaces between DFMEA and System Safety
 Process
- Supported definition of Design Failure Mode and Effect Analysis Process at MTU

How to contribute

Use the **Chat Function** to ask a question, at any time, or to make a comment.

Steven W. Finup Consulting Engineer GE Aviation

Stéphan DAUX APQP Leader & Master Safran Aircraft Engines

Registration Status (June 20th)

Webinar 1 : Overview

We do amazing things...

.. but the consequences of poor quality can be very serious

We have a great responsibility to keep our customers, passengers and our families safe.

Planning for Quality is key.

"QUALITY HAS TO BE CAUSED, NOT CONTROLLED."

PHILIP B. CROSBY

AS13100 FMEA Requirements & Guidance

	Downloaded from SAE International by Ia	n Riggs, Sunday, March	14, 2021	
SÆ	AEROSPACE		AS13100™	
INTERNATIONAL	STANDARD		issued 2021-03	
	AESQ Quality Management Sy Proc	stem Requiremen duction Organizat		ign and
	RATIONAL	LE		
harmonize and simplify s	created by the SAE G-22 Aerospace E supplier quality requirements that are in a s for Aviation, Space, and Defense Orga roval Process.	addition to the requi	irements of 9100 Quality I	Management
supplemental requirement	ce Engine Manufacturers based their s nts and guidance albeit with largely the egulatory, Customer, Industry, and Busin	same intent. These	supplemental requireme	nts originate
understanding, efficienc customers, the primary in	create a common set of supplemental re y, and performance. While significantly ntent of this new standard is to improve o rring consistent aerospace engine produ	y simplifying the to overall product quality	ousinesses of suppliers v	with multiple
	nental requirements aim to raise the back is provided to ensure clarity of expect		performance in these key	areas, and
	FOREWOR	RD		
	sfaction, the aviation, space, and defens oducts that equal or exceed customer an			d continually
complicated this objective purchased from suppliers	 industry and the resulting diversity of e. End-product organizations face the cha s throughout the world and at all levels wit nultiple customers having varying quality 	allenge of assuring thin the supply chair	the quality of and integration. Industry suppliers face t	on of product
Council to develop, spec	e Engine Supplier Quality (AESQ) Techni cify, maintain, and promote quality stand this standard may be applicable to other	ards relating to the	aerospace engine suppl	y chain. The
	promote defect prevention approaches ty Planning and Process Control to enable			ociated with
SAE Executive Standards Committee	ee Rules provide that: "This report is published by SAE to	advance the state of techn	ical and engineering sciences. The	se of this report is
entirely voluntary, and its applicabili	by and suitability for any particular use, including any pate t at least every five years at which time it may be revis	ent infringement arising then	efrom, is the sole responsibility of the	user."
Copyright © 2021 SAE International				
recording, or otherwise, without the		or transmitted, in any form of	or by any means, electronic, mechani	cal, photocopying,
TO PLACE A DOCUMENT ORDER	Tel: +1 724-776-4970 (outside USA) Fax: 724-776-0790 Email: CustomerService@sae.org		mation on this standard, vi .org/standards/content/AS13	
SAE WEB ADORESS:	http://www.sae.org			

RM13004 Defect Prevention Quality Tools to Support APQP & PPAP

An AESQ Reference Manual Supporting SAE AS13100™ Standard

Issued March 1, 2021

AESQ – Aerospace Engine Supplier Quality Strategy Group

AS13100 Chapter C Requirements

AS13100 Requirements	Chapter A AS9100 Rev D Supplemental Requirements									Chapter B AS9145 Supplemental Requirements					Chapter C Quality Tools to Support APQP									
Clause Number	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	DFMEA	Product KCs	Process Flow Diag.	PFMEA	Process KCs	Control Plan	MSA	Process Capability
AS13100 Support Material											RM13145 APQP & PPAP						R	M1:	300	4		RM13003	RM13006	

AS13100 Chapter C

- 21.1 Design Failure Mode & Effects Analysis (DFMEA)
- 21.2 Product Key Characteristics
- 21.3 Process Flow Diagrams (PFD)
- 21.4 Process Failure Mode & Effects Analysis (PFMEA)
- 21.5 Process Key Characteristics

- 21.6 Production Control Plan
- 21.7 Measurement Systems Analysis (MSA)
- 21.8 Initial Capability Studies

See Full Video at https://aesq.sae-itc.com

Quick Chat 1

Use the **Chat Function** to ask a question, at any time, or to make a comment.

Steven W. Finup Consulting Engineer GE Aviation

Stéphan DAUX APQP Leader & Master Safran Aircraft Engines

- (a) Have you read AS13100?
 - I. Yes
 - II. No
- (b) Have you read RM13004?
 - I. Yes
 - II. No
- (c) How would you judge your knowledge of Design FMEA?
 - I. No Knowledge
 - II. I know of it but no experience of using it
 - III. I have used it a few times
 - IV. I consider myself to be an expert

1 DESIGN FMEA REQUIREMENTS IN AS13100

FMEA in AS13100

As a minimum, Design FMEA shall be applied;

(a) New Design (21.2.2.5 Case 1)

(b) Changes to existing design (21.2.2.5 Case 2)

(c) Use of existing design in a new application, location, or environment. (21.2.2.5 Case 2)

AS13100 DFMEA Requirements

Unless otherwise agreed with the customer the DFMEA shall be;

- Completed in line with the process laid out in Chapter 2 of the Reference Manual RM13004, (21.1)
- Assessed using the scoring criteria in RM13004 for Severity, Occurrence and Detection (21.1.3.1)
- RPNs shall be calculated for each Failure Mode Potential Cause combination (21.1.3.1)
- Prioritized for improvement actions in the following order (21.1.3.3 & 4);
 - High Severity Failure Modes
 - Combination of High Severity and Occurrence scores
 - RPN scores

AS13100 DFMEA FMEA Requirements

Must be Created & Maintained by a <u>CROSS FUNCTIONAL TEAM</u> (20.1.2.4)

- "engineers with expertise in design, analysis/testing, manufacturing, assembly, service, quality, and reliability"
- "stimulate the interchange of ideas between the functions affected and thus promote a team approach"
- "is strongly recommended that manufacturing/assembly engineering participate in the Design FMEA"

Cross Functional Teamwork

Chance of success With three subject matter experts working as a team

Terricone & Luca, Successful Teamwork: A Case Study (2002)

Typical Cross Functional Team

Support also from other functions and specialists as required

AESQ – Aerospace Engine Supplier Quality Strategy Group

AS13100 Design FMEA Requirements

 "The earlier the Design FMEA is started during the product development process (PDP), the better the chances of optimizing the design in a cost and time effective manner"

FMEA as part of an Advanced Product Quality Planning (APQP) System

AS13100 Design FMEA Requirements

Design FMEA Scope

What is the scope of DFMEA?

- 1. For a new design the complete design of the item shall be included to a level of detail which is sufficient to establish risk level for all the Item's intended functions
- 2. For changes to an existing design the DFMEA shall focus on effective scope of change (it is assumed that there is a previously completed Design FMEA available for use. If not a complete Design DFMEA should be conducted)

Why do we need the System Architecture?

- At the beginning the scope has to be defined.
- The role the item plays in the overall design has to be considered.
- This includes design architecture specified by the customer as a constraint

Why do we need Interfaces and Interactions?

- Interfaces to other components, subsystems or systems has to be discussed.
- Physical and functional interfaces could be important for safety impact

Design FMEA is Part of a System

Output of one is input to the other

Every Function, Every Feature & Every Failure Mode

The DFMEA is a process to highlight the key areas of risk of design– that is the output of the DFMEA

If we pre-select the inputs based on what we 'think' is high risk then we may miss some important issues

We must sift through all functions and features.

Our products are in service for 30 years or more :

- Designs change
- Deviation exists
- Service experience is generated
- ➔ Information could be documented and assessed in DFMEAs

AS13100 Design FMEA Requirements

Design FMEA Updates

Rob Farndon Rolls-Royce

Steven W. Finup GE Aviation

Andrea Neumann MTU

Stéphan DAUX Safran Aircraft Engines

CREATING A DESIGN FMEA USING REFERENCE MANUAL 13004

QUICK OVERVIEW GUIDE

FMEA Definition

ltem	Function	Requirement	Potential Failure Mode	Potential Effect(s) of Failure	SEV	Potential Causes of Failure	Prevention Controls	0000	Detection Controls	DET	RPN	Improveme nt Actions
Fuel Air Bracket	Prevent excessive lateral motion of fuel tube #XYZ	Fuel Tube lateral motion constrained to < x mm	Fuel Tube lateral motion > x mm	Increased high cycle fatigue Stresses on fuel tube tube cracking; Fuel leaking leading to fire, explosion, safety hazard	10	Tube locating hole allowable diameter defined as too large	Bracket design Standard work document XYZ (2) Analysis – tube high cycle fatigue and wear (conducted at nominal	6	Test – Engine XYX Durability testing with post-test hardware inspections (8)		480	Conduct high cycle fatigue and tube wear analysis at RSS Worst-case combination of max. hole ID. Min tube
Failur	e Mode a	and Effects /	Analysis (F	MEA) is a n	netho	d designed	to: Fuel tube system					
1) Re	ecognize	and evaluate	the potentia	al functional	failur	es of an iter	n and the effe	ects an	d design relate	ed cau	ses o	f those
Fuel A fa i Bracket	luresral motion of											
2) Ide	entify acti	ons that elim	inate or red	uce the cha	nce o	callout error f the potentia	Standard work al failures oc	curring				
3) Do	ocument t	he managem	ent of desig	safety hazard (10) gn risk			(2)					

Different Types of FMEA

Design FMEA

Process FMEA

FMECA

The primary objective of an FMEA is to improve the product:

- a) For Design FMEAs, the objective is to improve the design of the system, subsystem or component.
- b) For Process FMEAs, the objective is to improve the design of the manufacturing & assembly process.
- c) For FMECA, the objective is to enumerate the risks associated with the operation of the product.

DFMEA FMEA Inputs and Outputs

The Design FMEA Template

	Sectior	1	\$	Section 2	S	ection 3		Section 4	Sectio n 5	Section 6	
ltem	Function	Requirement	Potential Failure Mode	Potential Effect(s) of Failure	SEV	Potential Causes of Failure	Prevention Controls	0 C C	Detection Controls T		Improvement Actions
Fuel Air What f t Wha	lateral unction does fue (Functio #XYZ	(Item)? Fuel Tube lateral the item have? on) mm	^{lateral m} Requir ^{x mm} (Fail What could	Increased high cycle fatigue Stresses on fuel uld you get the ements wrong ure Modes)? explosion, happen if it dic otential Effects)	10 I go	design to define the design to define the design to define the design to define the defined of the define the definet the define the define the define the	Bracket design Standard work document XYZ (2) ve get wrong in the couse the Failure occur (Potential auses)? Wear auses)? Wear (colducted at nominal dimensions only) this be prevented	6	How-will you check if the ^{Du} Cause and/or ^t Failure test hardwire inspections (8) Mode occur (8) (Detection Controls)?	480 Risk Priorit y Numb	Conduct high cycle fatigue and tube wear analysis at RSS WListcofe Improveme nt*Actions required to mitigate
O	& Specifica Assembly In Apply	structions		Increased build it be if a it did wrong es and erity Score)? tube cracking; Fuel leaking leading to fire, explosion, safety bazardo	d go 10	(Prevent How likely	ion Controls)? Fuel tube system is tit to be starking ence Score)? Bracket design Standard work document XYZ		How likely are you to detect the Cause or Failure Mode if it was defective (Detection Score)? Engine XYX build process will detect (6)	er (RPN) 120	the key Risks Identified None

Function and Requirement Focus

Design Process Focus

Risk Mitigation

Design FMEA Information Flow

ltem	Function	Requireme nt	Failure Mode	Potential Effect	Severity	Potential Cause	Prevention Control	Occurrence	Detection Controls	Detection	RPN
Fuel Air Bracket	Prevent excessive lateral motion of fuel tube #XYZ	Fuel Tube lateral motion constrained to < x mm	Fuel Tube lateral motion > x mm	fire, explosion safety hazard (10)	10	Tube locating hole	Analysis – tube high				
						 allowable diameter defined as too large 	cycle fatigue and wear (conducted at nominal dimensions only) (6)	6			480
						Bracket thermal growth defined as > tube thermal growth	Analysis – Components thermal growth (4)	4			320
									Test – Engine XYX Durability testing with post-test hardware inspections (8)	• 6	

Design FMEA Information Flow

DFMEA FMEA Data Sources

Ranking	Severity Category (Product)	Criteria: Severity of Effect Effect on Product – DFMEA					
10		Potentially hazardous failure without warning. Failure potentially affects safe operation of the product or causes regulatory non-compliance.					
9	Safety and/or Regulatory Compliance						
8		Product is not operational; safety not compromised. Failure causes major	Ranking				
	Primary Function	customer dissatisfaction and severe disruptions. Operability severely affected; primary functions/systems may be degraded.	10	Inevitable	developed for the first time for this technology in this application. New technology with no history of successful application in any industry. Design process will atmost certainly produce a deficient design on first attempt, requiring design iter detection activities.		
7		Failure causes high degree of customer dissatisfaction or severe disruptions.	9	Almost Inevitable	Very limited guiding practices for this technology may be available from other industries upon which t design. New technology with only limited relevance / limited application in other industries. Design process will almost certainly produce a deficient design on first attempt, requiring design Itera		
6	Secondary Function	Operability significantly degraded; secondary systems may be inoperable. Failure causes significant customer dissatisfaction or significant disruptions.	8	Highly Likely	detection activities. Some standard practices for this technology may be available from other industries upon whic New technology with moderate amount of successful relevant application.		
5		Moderate effect on operability; secondary systems may be degraded. Product secondary systems do not conform to operational requirements. Failure causes customer dissatisfaction, often resulting in operational disruption.			Design process is highly likely to produce a deficient design on first attempt, most likely requiring des ilteration(s) after detection activities. Existing standard methods are not applicable to the current design situation. Existing technology, but extremely different duty cycle, operating conditions or application. Past exp		
4		Moderate effect on operability. Non-compliance to functional requirement, although all systems operational. Failure causes some customer dissatisfaction noticed by most customers, often requiring in-service repair.	7	Likely	is of limited to no relevance. Design process is likely to produce a deficient design on first attempt, likely requiring design iteration detection activities. Existing standard methods are only partly applicable to the current design situation.		
3	Annoyance	Minor effect on operability. Non-compliance to functional requirement. Failure causes minor customer dissatisfaction noticed by many customers, often requiring action at next overhaul.	6	Possible	Existing technology, but highly different duty cycle, operating conditions or application. Past experier partial relevance. Design process could produce a deficient design on first attempt, may require design iteration(s) after activities.	r detec	
2	Awareness	Slight effect on operability. Non-compliance to functional requirement. Failure causes slight customer annoyance noticed by few customers, potentially resulting in additional overhaul cost.	5	Plausible	Existing standard methods are moderately applicable to the current design situation. Existing technology, but moderate differences in duty cycle, operating conditions or application. Past base is of moderate relevance. Design process could produce a deficient design on first attempt, may require design iteration(s) after activities.		
1	No Effect	No discernible effect on product operation.	4	Unlikely	Existing standard methods are highly applicable to the current design situation. Existing technology, but slight differences in duty cycle, operating conditions or application. Past exp is of good relevance. Design process is unlikely to produce a deficient design on first attempt, unlikely to require design iter detection activities.		
			3	Highly Unlikely	Similar successful past experience guiding design practices and choices. Existing technology, but minor differences in duty cycle, operating conditions or application. Past exp is of good relevance. Design process is highly unlikely to produce a deficient design on first attempt, highly unlikely to requiteration(s) affer detection activities		
			2	Extremely Unlikely	Probability of design error is significantly minimized through application of prevention controls - identi relevant, & successful past experience guiding design practices. Existing technology, no differences in duty cycle, operating conditions or application. Past experienc completely relevant, and of moderate extent. Design process is extremely unlikely to produce a deficient design on first attempt, extremely unlikely design iteration(s) after detection activities	e base	
			1	Prevented	Design error is either physically impossible or eliminated through application of prevention controls - identical, highly relevant, & successful past experience guiding design practices. Existing technology, no differences in duty cycle, operating conditions or application. Past experienc completely relevant, and of significant extert. Design process will almost centainly not produce a deficient design on first attempt, will not require de ilteration(s) almost centainly not produce a deficient design on first attempt, will not require de ilteration(s) almost centainty.	e basi	

Design FMEA Ranking Criteria

	Ranking	Detection Category	Criteria: Likelihood of Detection (Design Verification) - DFMEA		
	10	Will not detect	No current design control; Design control will not and/or cannot detect a potential failure cause/mechanism		
9		Not Likely to Detect or detected post Production Launch	Design analysis/detection controls are not likely to detect a potential failure cause/mechanism; Testing is post Production Launch, virtual analysis is of low fidelity and is not correlated to anticipated actual product operating conditions.		
	8		Failure cause/mechanism detected during product verification/validatior testing. Detected prior to Production Launch with "pass /fail" testing*or b uncorrelated late detailed analysis.		
	7	Post Design Freeze and Prior to Production Launch	Failure cause/mechanism detected during product verification/validation testing. Detected prior to Production Launch with "test to failure" testing* or by late partially correlated detailed analysis.		
urrence of Cause (DFMEA)	6	Launon	Failure cause/mechanism detected during product verification/validation testing. Detected prior to Production Launch with "degradation" testing", or by correlated late detailed analysis.		
are available for this technology - design system will this application. splication in any industry. deficient design on first attempt, requiring design itera	5		Failure cause/mechanism detected prior to Design Freeze using "pass/fail" testing* or by uncorrelated detailed analysis.		
y may be available from other industries upon which t	4	Prior to Design Freeze	Failure cause/mechanism detected prior to Design Freeze using "test to failure" testing* or by partially correlated detailed analysis.		
ited application in other industries. Seficient design on first attempt, requiring design itera	3	110020	Failure cause/mechanism detected prior to Design Freeze using degradation testing* or by correlated detailed analysis.		
ny be available from other industries upon which to ba essful relevant application. Icient design on first attempt, most likely requiring des	2	Robust Early Detection	Design analysis/detection controls are virtually assured to detect potential failure cause/mechanism. Virtual analysis is conducted ea the design phase and is highly correlated with actual and/or expec		
the current design situation. y cycle, operating conditions or application. Past expr			operating conditions.		
design on first attempt, likely requiring design iteration	1	Failure Prevented;	Failure cause/mechanism cannot occur because it is fully prevented through preventive design controls (e.g. proven design standard/best practice, proven common material, etc.)		
cable to the current design situation. cle, operating conditions or application. Past experier		Detection not Applicable			
in on first attempt, may require design iteration(s) after	detection				

- 1) The Ranking Criteria for Severity, Occurrence and Detection defined in RM13004 should be used
- Alternative Ranking Criteria maybe 2) used only if approved by the customer.

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESO. It is not permitted to be distributed to any third party without the written consent of the AESO.

FMEA Risk Priority Number Scoring

Severity x Occurrence x Detection = RPN

$4 \times 5 \times 5 = 100$

FMEA Risk Priority Number Scoring

FMEA Action Prioritization RPN PARETO

Notes on Risk Mitigation

Severity Scores

Can only be reduced through Product Redesign e.g. removing the need for a function or providing a 'fail safe' solution.

Can be reduced through generating more experience with analysis and/or testing during the design phase

Detection Scores

Can be reduced through enhanced and/or earlier testing

DFMEA FMEA Improvement Actions

Improved Occurrence Score from 6 to 2 by gain more experience with design

Conduct accelerated stress test to determine limits of max. hole ID, min tube OD configuration	Sarah Cracknell	June 1 st	Introduced May 29 th	10	6	4	240
(Improved DETECTION Score)							

Improved Detection Score from 8 to 4 by changing verification schedule

How long will it take? What is the benefit ?

Quick Chat 2

Use the **Chat Function** to ask a question, at any time, or to make a comment.

Steven W. Finup Consulting Engineer GE Aviation

Stéphan DAUX APQP Leader & Master Safran Aircraft Engines

(a) How does your organization currently comply to AS13100 and RM13004

- I. Not at all, we do not do Design FMEAs
- II. It is very different to how we currently do it
- III. We comply with more than 75% of the requirements but there is more we need to do
- IV. This is how we conduct Design FMEAs

Rob Farndon Rolls-Royce

Steven W. Finup GE Aviation

Andrea Neumann MTU

Stéphan DAUX Safran Aircraft Engines

3 DESIGN FMEA SUMMARY & FURTHER INFORMATION

Design FMEA Efficiency : Success Factors

Risk Priority Number

EFFECTIVE DFMEAs WILL TRANSFORM YOUR DESIGN PERFOMANCE!

<u>Tips for Efficient Deployment include;</u>

a) Do the right preparation

b) Work with a **<u>CROSS-FUNCTIONAL</u>** Team

- c) Teams that are prepared to **<u>GET ON</u>** and try it, avoid procrastination
- d) Have the right MIND-SET
- e) Right choice of **SOFTWARE** to manage data

Sources of Further Information & Guidance

Supporting SAE AS13100[™] Standard

Issued March 1, 2021

- Reference Manual RM13004 is available free of 1. charge from the AESQ website
- 2. **Global FMEA training is available to support this** approach through the SAE.
- 3. Subject Matter Interest Group to support **RM13004** Deployment established and contactable through AESQ Website

https://aesq.sae-itc.com

Subject Matter Interest Groups on the AESQ Website

AESQ – Aerospace Engine Supplier Quality Strategy Group

RM13004 DESIGN FMEA Webinars

June 22nd & 23rd 2022

AS13100 & RM13004 DESIGN FMEA - Understanding the Requirements

Led by Rob Farndon, these interactive webinars are designed to describe the intent of the AESQ AS13100 requirements for Design FMEAs and how they link to the effective deployment of Advanced Product Quality Planning (APQP) and a Zero Defect Strategy.

These webinars shall explain how AS13100 Design FMEA can be developed, maintained and improved using real examples of best practice from across the industry.

SESSION 1 AS13100 DFMEA Requirements and Overview (June 22 nd 14.00 – 16.00 UK Time)	SESSION 2 Key Care Points when Creating the Design FMEA (June 23rd 14.00 – 16.00 UK Time)
Overview of the requirements for Design FMEA in Chapter C of AS13100 and their link to the APQP / PPAP process	 A closer look at some of the key steps when creating Design FMEAs to illustrate the intent of the AS13100 requirements, including; a) Requirements & Potential Failure Modes
Explanation of the intent of each requirement and what success looks like	b) Potential Effects & Severity Ratingc) Potential Causes
Overview of the Design FMEA approach aligned to the RM13004 Reference Manual	 d) Prevention Controls & Occurrence Rating e) Detection Controls & Detection Rating f) Calculating the Risk Priority Number (RPN)
Links to further help and guidance	g) Prioritizing Improvements
Questions & Answers	Questions & Answers

Thank You For Attending!

Please join again tomorrow