

WELCOME AESQ SUPPLIER FORUM

11 April 2018 Trollhättan, Sweden

LOGISTICS HELEN DJÄKNEGREN GKN AEROSPACE

Logistics

WELCOME

JOAKIM ANDERSSON CEO, GKN AEROSPACE ENGINE SYSTEM

Welcome to AESQ Supplier Forum

hosted by

GKN Aerospace Engine Systems

Lession 1

LÄTT ATT GÖRA RÄTT

Enabler – Standards – MAKE IT HAPPEN

"Make Operation Boring"

Agenda

- 8:15 Welcome to GKN and AESQ Helen Djäknegren, GKN
- 8:35 Introduction to AESQ Martin Schaeffner, MTU
- 9:00 Voice of the Customer Emile Colongo, Airbus
- 9:45 Supplier Survey Results Olivier Castets, Safran

10:00 Break

- **10:30** Overview of AESQ Standards Olivier Castets, Safran
- 11:00 Marketplace #1 Published Standards Barrie Hicklin, Honeywell
- 12:00 Lunch

Agenda

- **1:00 Benefits of AS13001 DPRV Training Requirements -**Catherine Catarina-Graça, Safran
- 1:20 Benefits of AS13003 MSA Martin Schaeffner, MTU
- **1:40 Benefits of AS13004 PFMEA & Control Plans -**Ian Riggs, Rolls-Royce
- 2:10 Future Initiatives Peter Amsden, Pratt & Whitney
- 2:30 Break
- **3:00 Marketplace #2 Current Projects & Future Initiatives -**Barrie Hicklin, Honeywell
- 4:10 Marketplace Summary Barrie Hicklin, Honeywell
- **4:25 Closing remarks** Helen Djäknegren, GKN and Martin Schaeffner, MTU

Facilitators in the Room

Introduce Yourself

- 1. Take the Attendee Name Sheet from your table
- 2. Introduce yourself to as many people as possible in 5 minutes
- 3. Share your name, position, company and how far you have travelled to be here today
- 4. By the time you go home today we hope you can complete the whole sheet.

Code of Conduct

- No Commercialism
- No discussion of cost, pricing plans, pricing policies, product usage surveys, marketing plans or any related topics
- Presentations must focus on technical issues (not on marketing aspects of products) and relate to or support the development or maintenance of G-22 Committee work
- Be aware of and follow ITAR & EAR rules and regulations governing export control
- Discussions should be open and follow the agenda or other legitimate direction agreed upon by consensus of the committee - avoid unauthorized or 'private' meetings

Code of Conduct

- Respect basic meeting etiquette:
 - -Only one person speaking at any given time
 - -Attack the issue, not the person
 - -Be on time...returning from breaks/lunch
 - -Respect all ideas & comments
 - -No silent skepticism, be candid
 - -Do not dominate discussions
 - -Stay focused on the meeting & agenda
- Strive for high-quality standards to benefit all stakeholders

 users, customers, suppliers and the industry as a whole
- Strive for an open atmosphere that promotes a freeflowing interchange of standards technical information

INTRODUCTION TO THE AESQ

MARTIN SCHAEFFNER, MTU

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

Commercial Aviation – A Growth Market

2 X active aircraft worldwide

7,100 billion passenger km in 2016

17,000 billion passenger km in 2036

23,000 active aircraft in 2016

45,000 active aircraft in 2036

Quelle: Ascend, IATA, MTU

Aviation Safety

The Quality of our products and services are extremely important Quality and continuous improvement are an absolute must!

Chain of Events

In many cases, it is not a single malfunction, error or failure that leads to a crash.

- It is a sequence of events involving
- hidden (latent) failures
- errors of judgment/action
- a failure of the failure prevention systems

Manufacturing Quality Escapes in Turbine Engines

-->An FAA proposal for further investigation and action – January 2018

- The trend of manufacturing quality escape safety board issues that resulted in at least one operational event has been increasing.
- The percentage of total turbofan ADs associated with manufacturing quality escapes has been cyclic since 2004, but 2016 (37%) was the highest percentage in the prior four years, and second only to 2011 (44%).
- The top drivers in turbofan manufacturing quality escape ADs were related to issues with surface finish, incorrect dimensions, and forging (all with 8), followed by incorrect assembly (7).
- Life limited parts (32) made up the vast majority of the turbofan manufacturing quality escape ADs, more than three times the next closest part type.

AESQ Vision

To establish and maintain a common set of Quality Requirements that enable the Global Aero Engine Supply Chain to be truly competitive through lean, capable processes and a culture of Continuous Improvement

AESQ Vision

In detail

- Create common standards within the engine manufacturers (OEM's) in regard to quality
- Deploy together the written standards throughout our supply chain
- Establish capable quality processes and a culture of continuous improvement

Main targets

- To improve quality within the supply chain
- Improve on time delivery and minimize costs through a reliable quality performance
- Gain efficiency by standardized processes

AESQ Key Quality Elements

Supporting Standards: AS13000 Problem Solving; AS13001 DPRV Training; AS13002 Inspection Frequency; In process → AS13005 Audit; AS13007 Supplier Management

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AESQ Will Drive Progress

• AS13000, AS13001, AS13002, AS13003, AS13004 are all flowed down by all AESQ members and part of **your** Purchase Order

VOICE OF THE CUSTOMER

EMILE COLONGO, AIRBUS

SUPPLIER SURVEY RESULTS

OLIVIER CASTETS, SAFRAN

Supplier Survey Overview

Collaboration

• Working together to drive quality performance

Feedback

• Provide input on developing standards

Integrated Supply Chain

• Drive efficiency, maximize resources, create synergies

Training

Coordinated training efforts

Are you Aware of the Published Standards?

We still have some work to do

Which Standards Have You Heard Of?

Which Standards are in YOUR Contracts?

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

"IS GOOD ENOUGH?" - Video

AESQ STANDARDS OVERVIEW

OLIVIER CASTETS, SAFRAN

HELEN DJÄKNEGREN, GKN

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AESQ Website - aesq.saeitc.org

Supplier Forum Feedback

AESQ – Aerospace Engine Supplier Quality Strategy Group

Standards Feedback

General Feedback

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AESQ Guiding Principles

- Simplify & Standardize supplier requirements
- Build on existing industry standards
- Common language for Quality
- Standards are simple, prescriptive & auditable
- Promote standardized 3rd party training
- Easy to adopt within existing process/systems

Deliver results rapidly through focused activities

AS13000 Problem Solving

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AS13001A Delegated Product Release Verification Training

<image/> <complex-block></complex-block>	 Future State One Common Training Requirement Industry-wide DPRV database through SAE Delivered globally by SAE Refresher training every 3 years
AESQ Principles	Expected Benefits
Standardise	Deduced exets for such as a Querralians
	Reduced costs for customers & suppliers
Simplify	 Reduced costs for customers & suppliers Reduced training time for DPRV personnel
Simplify	Reduced training time for DPRV personnel
 Simplify Adopts Existing Industry Standards* 	 Reduced training time for DPRV personnel Training provided in region of DPRV personnel

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AS13004 PFMEA & Control Plans

<section-header></section-header>	Future State uterisk in Scope: Risk Mitigation requirements with execution guidance & recommended timing, supporting AS9145
Varying standards and approaches	Out of Scope: DFMEA requirements, any duplication of related Aerospace Standards (e.g. AS9145)
AESQ Principles	Expected Benefits
Standardise	Standardised process
Simplify	Increased pace of adoption
Adopts Existing Industry Standards	 Improved compliance to a better standard
Prescriptive, Auditable	Reduced quality risks
Common Language	Ultimately improved quality & delivery
Supported by 3 rd Party Training & Consultancy	

AS13003 Measurement Systems Analysis AES

Original State	Future State					
MSA GR&R	MethodCriticalMajorResolution $\leq 10\%$ of total tolerandAccuracy ratio**Requirement = 10:1Accuracy Error / Bias $\leq 10\%$ of total tolerandRepeatability $\leq 10\%$ of total tolerandGauge R&R $\leq 10\%$ of totalComputer driven measurement systems correlation $\leq 10\%$ of total toleranceComputer driven measurement systems 					
AESQ Principles	 Expected Benefits Improved knowledge of Measurement Capability Clarification of minimum acceptance standards Mandates replaces guidance Adopts Automotive Industry Action Group 'Blue Book' on MSA Improved Quality Performance 					
 Standardise Simplify Adopts Existing Industry Standards Prescriptive, Auditable Common Language Supported by 3rd Party Training & Consultancy 						

AS13002 Inspection Frequency

To establish and maintain a common set of Quality Requirements that enable the Global Aerospace Engine Supply Chain to be truly competitive through lean, capable processes and a culture of Continuous Improvement

	AS13000 Problem Solving	AS13001 DPRV Training	AS13002 Alternate Inspection Frequency Plans	AS13003 MSA	AS13004 PFMEA & Control Plans
AESQ Member	Accepted	Accepted	Accepted	Accepted	Accepted
Arconic (P&P)	May-15	Feb-16	May-17	Mar-16	Aug-17
GE	May-14	Oct-14	Jan-15	Jan-16	Aug-17
GKN	Jun-14	Mar-15	Apr-15	Mar-15	Aug-17
Honeywell	Jan-16	Mar-15	Oct-15	Jan-16	Aug-17
MTU	Aug-15	Jan-16	4Q16	Jan-16	Aug-17
PCC Structurals	Mar-15	Jan-15	May-15	Jun-16	1Q 18
Pratt & Whitney	Jan-15	Mar-15	Apr-15	Mar-15	Aug-17
Rolls-Royce	Dec-14	Oct-15	Jan-15	Jan-15	Aug-17
Safran	Jan-15	Jan-15	Jan-15	Jan-15	Aug-17

AESQ Standards - Global Deployment Status

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and

Progress Forward

AESQ is now well established and is gathering momentum

Supplier feedback is very positive & they want us to move faster

Broader supplier engagement is being sought to apply more resources

Stronger links with IAQG & PRI are being developed

Stakeholder engagement essential for progress & direction

MARKETPLACE #1 PUBLISHED AESQ STANDARDS

BARRIE HICKLIN, HONEYWELL

Marketplace #1

15 minutes per table Published Standards (4 Teams)

STANDARD	TITLE	FACILITATORS
AS13000	Problem Solving Requirements for Suppliers (8D)	Olivier Castets Helen Djäknegren
AS13001	Delegated Product Release Verification Training Requirements	Earl Capozzi Catherine
AS13002	Requirements for Developing and Qualifying Alternate Inspection Frequency Plans	Dave Goldberg Barbara Negroe
AS13003	Measurement Systems Analysis Requirements for the Aero Engine Supply Chain	lan Riggs Martin Schaeffner

- 1. Has the Standard been flowed down by your Customer(s)?
- 2. Do you have any problems with or suggestions for the Standard?
- 3. Have you had problems flowing down the Standard to your suppliers?
- 4. Are there any commodity specific considerations?

LUNCH

BENEFITS OF THE STANDARDS & SUPPLIER CONTRIBUTIONS TO AESQ

AS13001 DPRV TRAINING REDUCING NON QUALITY EVENTS BY DEPLOYING DPRV AT SAFRAN SUPPLIER FACILITIES

CATHERINE CATARINA-GRACA, SAFRAN

N PROCESS TO BECOME A DPRV 2017 Update

Check the **documentation**.

(Mainly consistency between the routing sheet and the delivery documents)

Perform a **physical check**. (*Marking, visual, ...*)

Check the consistency between **the packaging and labeling with the specifications** of the item ordered by Safran.

Record monitoring in the DPRV log.

SAFRAN RECORD MANAGEMENT

 $\overline{\Psi}$

On Safran Aircraft Engines Quality ERP Check over more than 1000 claims

FAULT 🖵	DEFINITION
C00	CONDITIONING PACKAGING
P00	DOCUMENTATION
T00	MARKING / IDENTIFICATION / TRACEABILITY / MANAGEMENT (GENERIC)
V00	APPEARANCE / VISUAL / FINISH (GENERIC)

Safran Aircraft Engines Claims : DPRV Deployed

Diminishing despite the LEAP ramp up

Comparing deployed and non deployed sites

WHAT ABOUT MARKING EVENTS ? AESO

SAFRAN IMPROVEMENT ACTION PLAN

- Communicating on metrics : going ahead with DPRV Deployment
- Specific improvement action plan on « top 10 » SAFRAN impacting suppliers
- Raising awareness on SAFRAN and Safran Aircraft Engines requirements for DPRV managers (8 workshops worldwide) focused on SAFRAN & AESQ standards
- SAFRAN and Safran Aircraft Engines Communication kit are updated twice a year
- Promote Benefits of DPRVs as 9 SAFRAN companies are going live

AS13003 MARTIN SCHAEFFNER, MTU

MSA@MTU

Experiences from using the Measurement System Analysis method at MTU Martin Schäffner

10/03/2017

Proprietary Notice

This document contains proprietary information of the MTU Aero Engines AG group companies. The document and its contents shall not be copied or disclosed to any third party or used for any purpose other than that for which it is provided, without the prior written agreement of MTU Aero Engines AG.

General Approach

What is the intent?

The goal is to make sure that every measurement system (gage + outside influences) used is suitable for the intended task \rightarrow representing "real" part quality! The AS13003 method summarizes different tools and delivers a standardized approach. Mainly used in: *PPAP; approval of new measurement technology; stabilizing production processes*

"Method 1" Is the gage precise and accu rely on it?	rate enough to	"Method 2" What happens in real production line conditions?		
How big is the variance of my measurement?	Calculation of the value cg >1,33	What happens if the same inspector measures the same part without knowing the results from his last measurements?	% GR& R	
Is there a systematic error in the measurement?	Calculation of the value cgk >1,33	What happens when a different inspector measures the same part without knowing the results from his coworker?	Total Varia nce	

MSA@MTU

© MTU Aero Engines AG. The information contained herein is proprietary to the MTU Aero Engines group companies.

Hands-on Example

Backround

- · Thin-walled part with tight tolerances
- The measurement results were suspected to be unstable due to issues with the fixture and clamps.

\rightarrow MSA performed according to AS13003

Actions defined due to results from the MSA

Case, Turbine

- characteristics showed problems with accuracy and repeatability
 - → a test on a more accurate CMM showed a huge improvement
- form tolerances problems with repeatability even though the machine was changed
 - \rightarrow The cause was found in changing the measuring fixture
- The parallelism tolerance between the upper and lower flange was still not in
 - → Together with engineering the reference plane was changed

MSA@MTU

© MTU Aero Engines AG. The information contained herein is proprietary to the MTU Aero Engines group companies.

Lessons Learned up to now

 By using the MSA method you get a reliable and understandable statement if you can rely on your results or not

 \rightarrow don't touch your production processes before you are sure about your measurement

- Cg & Cgk database is a great support to discuss drawing requirements with the design organization
- An MSA helps to eliminate influences coming from different measurement strategies
- A CMM measurement is not always reliable accuracy and inspector variance matters
- High quality of existing measurement programs as in most cases only a few characteristics show a significant variance
- A comparison to an independent reference measurement gives a valuable insight into the production line measurement;
 → not easy to achieve due to the small tolerances and the expectation to be more

 \rightarrow not easy to achieve due to the small tolerances and the expectation to be more precise

 For tighter tolerances the method is very challenging and even a difference of 1/10 µm between reference & production results can be the reason for an incapable system -> Rules for these special cases are necessary

BENEFITS OF AS13004 – PFMEA

DR IAN RIGGS, ROLLS-ROYCE

Effectiveness relies on Cross Functional working

Defect Prevention Key Quality Tools for Zero Defects

AS13004 Process FMEA & Control Plan

What's New

- 1. A Process FMEA for *every* part number
- 2. A Process FMEA that covers **all** Process Steps (those that transform the product)
- A Process FMEA that covers *all* design features / characteristics
- 4. Failure Modes that describe how the PRODUCT can fail to meet Design Intent
- 5. A Control Plan for *every* part Number

AS13004 Process FMEA & Control Plan

DON'T PANIC!

It *is* an achievable task, thanks to:

Computer Software e.g. xFMEA, DataLyzer, etc.

The use of Reference PFMEAs (see later)

Being part of a Large Network – sharing lessons learnt

AS13004 Deployment Case Study

- SAM Suzhou Precision
 Machining Supplier based in
 Suzhou, China
- Circa 300 employees
- Produces Engine Mounts for Rolls-Royce (200+ features)
- Began Process FMEA journey with Rolls-Royce for NPI in April 2017 (in line with AS13004)
- R-R requires PFMEAs to AS13004 to be completed for all NPI, Key Source & Method Changes and Major Quality Escapes

AS13004 Deployment Case Study Right First Time % SUZHOU 5 2 F Μ Μ Α S Ν F J Α J 0 D Μ I 1 2 3 4 5 Completed Completed Began Intro. Intro. 1st PFMEA SPC PFMEA Error 16 PFMEAs

AESQ - Aero Engine Supplier Quality Strategy Group

Proofing

SAM Suzhou Success

Key Learning:

- Once trained, they just 'got on with it'
- They set aside time each week to develop PFMEA
- Once defined they took actions to mitigate the identified risks e.g.
 SPC, error proofing
- Now deploying PFMEA onto all legacy Rolls-Royce part numbers

In 2018 SAM Suzhou won the Rolls-Royce most Improved Supplier Award.

They continue to be Defect Free into Rolls-Royce...

Using Reference PFMEAs

Blue Boxes show the (partial) content of a Reference PFMEA for Hole Drilling where the Failure Mode is 'Hole Too Big'

Creating a Part Specific PFMEA Using Reference FMEAs

'Shell' Part Number PFMEA

A 'shell PFMEA is created for each operation and every feature / specification required to produce a specific part number using the Process Flow Diagrams, Characteristics Matrix and Drawing / Specifications.

Completing the Part Number Specific PFMEA

Process	Requirements	Potential Failure Modes	Potential Effects	S E V	Potential Causes	Prevention Controls	O C C	Detection Controls	D E T	R P N
0P10	Drill Fuel Hole	Hole too	Fuel leak leading to explosion	9	Oversize tool dítions	Tool pre- setting	4	Bore mic at OP 50	7	2 5 2
CNC Drilling	50mm Diameter +/- 1.0 mm	Big	Scrap part	6	Spindle alignment error	Asset Care & Calibration	3	Weekly ball bar check	8	2 1 6
0P10	Drill Air Hole	Hole too	Slight increase in noise level	3	Oversize tool	Tool pre- setting	2	Bore mic at OP 50	7	5 6
CNC Drilling	20mm Diameter +/- 3.0 mm	Big	Concession	4	dítíons Spindle alignment error	Asset Care & Calibration	1	Weekly ball bar check	8	3 2

The team may need to add in additional Failure Modes, Potential Causes and/or Control information based on their knowledge of the specific part numbers. Some information in the Reference PFMEA may not be relevant so can be deleted.

How we can Help

Process PFMEA Practitioner Guide for developing PFMEAs & Control Plans to AS13004 including the creation and use of Reference FMEAs is available free of charge (electronically or hard copy) from Rolls-Royce

Rolls-Royce will make its Reference PFMEAs available to external businesses to promote the deployment of AS13004 (see Guidebook for details)

We recommend that suppliers invest in a suitable FMEA software tool to manage the level of data created efficiently

We have developed Global PFMEA training to support this approach with Smallpeice Enterprises and Industry Forum (See Guidebook for details)

It *really* is that easy.....

It *really* is that effective.....

FUTURE INITIATIVES PETER AMSDEN, PRATT & WHITNEY

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AS9145 (APQP/PPAP) & AESQ Standards

confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AS13005 Quality Audit Requirements AESC

AS13006 Process Control Methods

AESQ – Aerospace Engine Supplier Quality Strategy Group This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AS13004 & AS13006 Standard Relationships

Related Standards

AS13000: Problem Solving Requirements (8D)

AS13002: Developing & Qualifying Alternative Inspection Frequency Plans

AS13003: Measurement Systems Analysis Requirements

AS9103: Variation Management of Key Characteristics

AS9145: Advanced Product Quality Planning & Production Part Approval Process

AS13007 Supplier Management

- Lots of sub-tier surprises? Is the variation and risk understood?
- Is the risk owned?
- How is it managed?
- How will it be improved?

AS13007 Supplier Management

Existing & Future Workstreams

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

AESQ Strategic Process Map

Assimilation & prioritization of future AESQ initiatives for standardization and step improvements in quality

AESQ – Aerospace Engine Supplier Quality Strategy Group

This document slide does not contain ITAR or EAR technical data. The content of this presentation slide is proprietary and confidential information of the AESQ. It is not permitted to be distributed to any third party without the written consent of the AESQ.

How You Can Participate

aesq.saeitc.org/

- Attend our AESQ Supplier Forums
- Provide feedback on current standards & those in developent
- Share best practice deployment stories and impact of standards via the AESQ Website
- Help identify new areas of standardization & future work

Challenge your customers about deployment of standards AESQ members are committed to deploy

MARKETPLACE #2

BARRIE HICKLIN, HONEYWELL

Marketplace #2

AESO STRATEGY GROUP

15 minutes per table

Standards in Development & Future Initiatives (4 Teams)

STANDARD	TITLE	FACILITATORS
AS13005	Quality Audit Requirements	Helen Djäknegren & Catherine Catarina-Graca
AS13004 AS13006	PFMEA & Control Plans Process Control Methods	Peter Amsden Dave Goldberg
AS13007	Supplier Management	Thomas Schmitt Barbara Negroe
	Future Standards	Dele Awofala Martin Schaeffner

Answer these questions for each Workstream developing a Standard

- 1. What are the main challenges or difficulties?
- 2. What misalignments are apparent between your customers?
- 3. What are your concerns and recommendations (including training)?
- 4. Are there any commodity specific considerations?

MARKETPLACE SUMMARY

BARBARA NEGROE, GE AVIATION

Marketplace Summary Session 1

STANDARD	KEY FEEDBACK	FACILITATORS
AS13000 (Problem Solving)	 How to find internal sponsorship? Small or large issue – can be applied 	Olivier Castets Helen Djäknegren
AS13001 (DPRV)	Point of contact at OEMsTranslation – language issue	Earl Capozzi Catherine
AS13002 (Inspection Frequency)	 Special processes not covered (NDT) Order of implementation (13006) 	Dave Goldberg Barbara Negroe
AS13003 (MSA)	 Guidance material will be helpful Deployment details not available in standard ("how" part is missing) 	lan Riggs Martin Schaeffner

Marketplace Summary Session 2

STANDARD	KEY FEEDBACK	FACILITATORS
AS13005 (Quality audit requirements)	Risk AnalysisIndustrial assessment instead of audit?	Helen Djäknegren Catherine
AS13004 (PFMEA & Control Plans) AS13006 (Process control methods)	 Make drafts available Concern about design authority not providing information for PFMEA 	Peter Amsden Dave Goldberg
AS13007 (Supplier management)	 Add Ethics category A common/std form for all suppliers 	Thomas Schmitt Barbara Negroe
Future	 Include part marking Contract review – acknowledgment & spec review 	Dele Awofala Martin Schaeffner

CLOSING REMARKS

AESQ Vision

To establish and maintain a common set of Quality Requirements that enable the Global Aero Engine Supply Chain to be truly competitive through lean, capable processes and a culture of Continuous Improvement

AESQ Vision

In detail

- Create common standards within the engine manufacturers (OEM's) in regard to quality
- Deploy together the written standards throughout our supply chain
- Establish capable quality processes and a culture of continuous improvement

Main targets

- To improve quality within the supply chain
- Improve on time delivery and minimize costs through a reliable quality performance
- Gain efficiency by standardized processes

LÄTT ATT GORA RÄTT

AESQ Will Drive Progress

Spread the Word

Provide feedback on the AESQ website

SAFE RETURN HOME